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Abstract: A hybrid approach is proposed to extract the 

aeroacoustic noise generated by low Mach number internal 

flows. In many practical designs, often the sources of 

aeroacoustics distributed over non-compact distances. The 

traditional method for prediction of these regions, when an 

incompressible flow is adopted, it yields erroneous result. 

The present work by combining Curle’s analogy with a 

boundary element method performs an appropriate 

approach for prediction of sound resulting from 

turbulence/body interaction for compact/non-compact 

regions. The validation of this method is performed by 

comparing the sound produced by the leapfrogging of two 

rectilinear filament vortices within an infinite two-

dimensional straight duct by the acoustic field be obtained 

using tailored Green’s function based on the non-

evanescent duct modes. The flow field is obtained by 

integrating the reciprocal Biot-Sowart induction of the two 

spinning vortices. The sound is predicted in frequency 

domain applying the Curle/BEM approach, shows an 

excellent agreement with the reference solution.    
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I. INTRODUCTION 

In many practical applications, sound is generated by 

interaction of turbulent flow with solid objects. In such 

cases, sound waves experience multiple reflections from 

solid objects. To predict the aeroacoustic field in these 

situations, an appropriate method is required to predict 

both directly propagated sound and scattered sound 

waves. More importantly, the employed method must 

avoid many simplification assumption often made about 

the geometry, compactness or frequency content of 

sound sources. The prediction of the acoustic 

performance as well as for analyzing the governing 

mechanism of aeroacoustics began more than fifty years 

ago, known as Lighthill [1] analogy. Lighthill’s original 

work considered the propagation of acoustic waves from 

unbounded turbulent flows. Curle [2] extended Lighthill 

acoustic analogy with dipole nature to include the sound 

predicted by stationary, impermeable rigid surface 

immersed in the unsteady field. The work of Ffowcs 

Williams and Hawkings [3] allowed the impermeable 

rigid surface to be in arbitrary motion and resulting 

Doppler effects. The work of di Francescantanio [10] 

further extended this to allow the surface to be 

permeable.  

In the present work there are considered with the noise 

generated by confined flows and its propagation with the 

analogy, by Davies and Ffowcs Williams [4]. They 

show that the acoustic efficiency of turbulent within a 

straight infinite duct varies with frequency, from a 

dipole like behavior below the cut-off frequency to free 

field quadrupole efficiency as soon as a few transverse 

modes are cut-on. Nelson and Morfey [5] and Peters and 

Hirschberg [6] studied to internal simple duct 

configurations such as diaphragm, contraction/ 

expansion. Low frequencies are often considered at 

traditional approaches, which present two advantages. 

Firstly the sources begin acoustically compact, it can be 

modeled by a point source. Secondly, for frequency 

below duct cut-off, one-dimensional Green’s function 

can be employed to describe acoustic propagation. 

However, in many Industrial applications, often the 

sources of aeroacoustics distributed over non-compact 

distances. Furthermore, the spectrum of interest extends 

often beyond the transverse cut-off frequency, up to 

several KHz. The fact that the source is non-compact 

distance gives rise to difficulties such as discrimination 

between sound production and scattering effects. The 

compact body assumption is to neglect the scattering of 

sound produced by the body over itself [7]. Using an 

incompressible flow model for a non-compact 

configuration can yield quite erroneous result, as shown 

by Schram et al [8].  

This work is aimed at the development of simulation 

methodology suitable for the prediction of aeroacoustic 

performance of flows confined in non-compact 

turbulent-body interaction region, i.e. high Helmholtz 
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numbers He = kh = 2πfh/c0, such as heating, ventilating 

and air conditioning, automotive exhaust and pipe 

network with side branches, valves system. The 

conceptional differences in the simulation of sound 

generation and propagation are large enough to justify a 

treatment of the two as separate topics. The constraints 

like to this context imposed the choice of hybrid 

method. The unsteady turbulent flow is computed in 

duct to determine acoustic source terms, the latter being 

then propagated to produce the radiated noise. The 

implementation is analogy derived by Curl for 

prediction of the sound resulting from turbulent/body 

interactions. The pressure fluctuation that is involved in 

the dipole source term of Curle’s analogy was 

decomposed Hydrodynamic pressure and acoustical 

pressure. The Hydrodynamic pressure can be resulted by 

an incompressible flow model and the latter component 

has to be computed in some way and added to the 

Hydrodynamic component in order to obtain correct 

result.  A boundary element method (BEM) [9-10] is 

applied to model non-compactness effects. It consists of 

a discretization of the boundary integral solution of the 

Helmholtz equation assuming a free field Green’s 

function.  

The present paper includes some results of an 

aeroacoustical study of the leapfrogging of two 

rectilinear filament vortices within an infinite two-

dimensional straight duct. Such a flow description being 

incompressible used to descript the acoustic sources. 

The acoustic results obtained using the Curle/BEM 

method, are compared to reference results using tailored 

Green’s function. 

II. BOUNDARY INTEGRAL 

FORMULATION OF CURLE’S ANALOGY 

The inhomogeneous wave propagation equation is 

considered in the Fourier domain, which takes the form 

of the Helmholtz equation: 

2 2ˆ ˆ ˆa aP k P q     (1) 

In Eq. (1) 2 2
0 0

ˆ ˆi t i t
aP e C e C    , 0k C  and 

2ˆ ij i jq T x x     with ˆ i t
ij ijT T e   is Lighthill’s tensor. 

With some straightforward algebra, takes the following 

formula such as Curle’s result but in the Fourier domain: 
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In Eq. (2) the pressure P̂  is the full pressure fluctuation 

(acoustic + hydrodynamic) and the Fourier domain free-

field Green’s function is 11
04

ˆ ( )G H k r  with 1
0H  is 

Henkel’s function of first kind and 
2122 ))()(( yyxxr  . In what follows, the hat 

notation, which indicate Fourier component, will be 

dropped for the sake of readability. 

With convolute the Helmholtz equation with the free 

field Green’s function yields: 
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An exclusion volume V  which includes the listener’s 

position X, was removed from the integration volume to 

the Green’s theorem be applied in the domain which is 

free of the singularity of Green’s function at X=Y. 

Therefore, the third integral of Eq. (3) is equal to zero. 

Applying Green’s theorem and integrating by parts, Eq. 

(3) can be simplified as: 

2
3 2

ij
i j
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 (4) 

Where C is the solid angle is equal to 1 when X is within 

the volume, and equal to 1/2 when X lies over a smooth 

of the body and zero otherwhere.  

As a corollary, the Eq. (4) can be seen as an implicit 

integral equation giving the pressure at any point of flow 

field, including body surface, provided the volumetric 

term is known.  

An exact flow description satisfy Eq. (4), while an 

incompressible flow model only verify the same relation 

if the domain V is acoustically compact, i.e. if acoustical 

propagation is irrelevant. For a non-compact cases and 

incompressible flow model we decompose the wall 

pressure as the sum of a hydrodynamic and an acoustic 

components: P = Ph + Pa. Beside we decompose the 

integration domain in two parts, V1 is localized around 

the collocation point X with dimensions compact and 

volume V2 is defined as V\V1, and their boundaries 1V  

and 2V . The hydrodynamic pressure over the compact 

domain V1: 

1
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Subtracting Eq. (5) from Eq. (4) yields: 
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This integral implicit can be classically resolved using a 

boundary element method with Gaussian Quadrature 

method. 

III. FLOW MODEL 

An incompressible flow description is obtained by 

integrating the reciprocal Biot-Savart induction of the 

two leapfrogging vortices. The two-dimensional velocity 

field (u,v) is derived from the complex velocity 

potential: u- iv = dw/dz, where z = x + iy is the complex 

coordinate, in a coordinate system having the x-axis 

aligned with the duct symmetry axis. The calculation of 

the velocity field inside the duct and of the wall pressure 

field, induced by the two leapfrogging vortex filaments 

shown in Fig. 1, is performed in two steps. In the first 

step, the trajectories of the two vortices are integrated in 

time, by evaluating the velocity field induced at each 

vortex position by the other filament. The velocity field 

over the whole duct domain can then be obtained from 

the complex potential induced by the two vortices at 

each time step.  

 

Fig. 1.  Two rectilinear filament vortices 

For a vortex filament placed within an infinite straight 

duct of height h, an infinite network of image vortices 

must be added to fulfill the non-penetration velocity 

boundary condition at the upper and lower walls located 

at the coordinates / 2z ih   and / 2z ih  . The 

resulting velocity potential due to the vortex n at the 

coordinate zn is therefore: 

1
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 (7) 

Where   is the circulation of each vortex. where the 

first line corresponds to the vortex filament within the 

duct, the second line sums the contributions of the 

vortex images due to the upper wall (including the 

image of this image by the lower wall, and so on), the 

third line sums the contributions of the image of the 

vortex due to the lower wall (including the image of this 

image due to the upper wall, and so on).   

The duct height is h = 1 m, with a first cut-off frequency 

of 170 Hz. The vortex filaments are initially placed over 

the duct axis, separated by a distance h = 2 and a speed 

of sound C0 = 340 ms
-1

. 

With solving the trajectories of the two vortices by time 

marching the equations for the velocity of each vortex 

filament m, induced by its own potential and the 

potential due to the other vortex n, accounting for their 

images:  
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For m, n = 1, 2 (m   n). 

Integrating the unsteady Bernoulli equation along each 

wall yield the unsteady pressure distribution at the walls: 

2

2

w w
w

u
P

t

 
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  

  (10) 

At every time step, velocity field corresponding to the 

azimuthal velocity within a radius 50h  from the 

vortex filament considered as: 
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Where the coordinate (x, y) are taken with respect to the 

vortex. A standard cell centered scheme is applied for 

calculation with regular spacing 0.05x h y h    . 

Fig. 2 illustrates, for a single time step, that the 

component Txy = uv of Lighthill’s tensor over the 

region of source field (-1.5  x/h  1.5) and the Fourier 

transform wall pressure fluctuation. 

 

 

Fig. 2.  Instantaneous Lighthill’s tensors ij i jT u u    

and Temporal Fourier transformation of wall pressure 

fluctuations over both upper and lower walls. 

Fig. 3 illustrates the Fourier transformation of 

Lighthill’s tensor 0xyT uv  for 4.8kh  . 

(a) 

 

(b) 

 

(c) 

 

Fig. 3.  Temporal Fourier transformation of Lighthill’s 

tensors 0ij i jT u u  for 4.8kh  . (a) Txx, (b) Txy, (c) 

Tyy. Level of them is between -100…+100 

Non-reflecting boundary condition is applied at both 

ends of the duct to permit comparison with the infinite 

duct reference solution. An acoustical impedance

0 0Z C boundary condition, which is anechoic for the 

plane wave propagation, is used at both ends of the duct 

model. The acoustic pressure has been solved for 

frequencies covering the range kh = 1…7, and compared 

with the exact solution obtained using the tailored 

Green’s function from reference 8.  

 

IV. SOUND EMITTED 

 The approach has been applied to the duct leapfrogging 

case. Fig. 4 show the sound field of dipole and 

quadrupole sources at kh = 4.8 from numerical solution. 

Fig. 5 show the sound field from quadrupole source 

alone at same kh and Fig.  6 show the sound field from 

dipole source alone at same kh. We observe that the 

dipoles contribute have more contribution from 

quadrupole at far from vortexes location. The important 

of quadrupole contribution is related to the relatively 

high Mach number, making the source region non-

compact. Moreover, at this straight duct case the dipole 

merely represent mirrored reflection of the quadrupole, 

and have thus at most a similar acoustic efficiency.   

 

Fig. 4.  Sound pressure field, dipole and quadrupole at 

kh = 4.8 

 

Fig. 5.  Sound pressure field, quadrupole alone at kh = 

4.8 

 

Fig. 6.  Sound pressure field, dipole alone at kh = 4.8 

Results at some frequencies, kh = 2.4, 3.2, 4.0, 4.8, 5.6, 

are displayed in Fig. 7. It shows amplitude of the sound 

pressure field at the domain at some harmonic 

frequencies and compare to Schram [7] data. The 

agreement is good for all frequencies except for fourth at 

kh = 3.2, where there are some discrepancies. This is 

maybe due to the inappropriate boundary condition 

Z C  to be most noticeable just above the cut-off 

frequencies of the duct. It can be concluded that a 

prediction with BEM method for infinite duct is not only 

meaningful below the cut-off frequency, but also for 

some frequencies within the interval between the first 

and second cut-off. 
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Fig. 7.  Sound pressure amplitude 

V. CONCLUSION 

An approach combining the Boundary Element Method 

with Curle’s analogy has been implemented. It has been 

applied to a benchmark for computational aeroacoustic: 

the sound produced by two leapfrogging vortex filament 

in an infinite two-dimensional duct. The results have 

good agreement between the numerical and reference 

data for all frequencies for which an approximate 

anechoic boundary condition was shown to be suitable. 

This hybrid method can solve the acoustic propagation 

in geometries of arbitrary extent and complex. In 

addition, it allows using an incompressible model of the 

flow field, which a compressible solvers face stiffness 

issues and converge slowly to a workable flow solution 

at low Mach numbers. 
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