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Abstract -An investigation has been made to study the heat 

transfer effect in a boundary layer flow through porous 

medium of an electrically conducting visco-elastic fluid 

subject to transverse magnetic field in the presence of heat 

source. We have studied the effects of radiation, viscous 

and Joule dissipation and internal heat generation / 

absorption. Closed form solutions for the boundary layer 

equations of the flow are presented for two classes of visco-

elastic fluid, namely, the second-grade and Walters B  
fluid. The method of solution involves similarity 

transformation. The coupled non-linear partial differential 

equations representing momentum and concentration and 

non homogeneous heat equation are reduced into set of 

non-linear ordinary differential equations. The 

transformed equations are solved numerically by using 

Runge-Kutta sixth order with shooting technique. The 

comparison has been made with the confluent 

hypergeometric (Kummer’s) function. The exact solution 

of temperature field are obtained for prescribed surface 

temperature (PST) as well as prescribed surface heat flux 

(PHF) boundary condition. The interaction of magnetic 

field is proved to be counter productive in enhancing 

velocity distribution, whereas presence of porous matrix 

reduces the temperature field at all points.  

Key words: Heat source, Porous medium, Second grade / 

Walters B  Visco-elastic, Kummers function. 

I. INTRODUCTION 

The fluid flow over a stretching sheet is important in 

many practical applications such as extrusion of plastic 

sheets, paper production, glass blowing, metal spinning, 

polymers in metal spring processes, the continuous 

casting of metals, drawing plastic films and spinning of 

fibers (Paullet and Weidman, [1]). The quality of the 

final product depends on the rate of heat transfer at the 

stretching surface. The problem of stretching surface 

with constant surface temperature was analyzed by 

Crane [2]. The growing need for chemical reaction and 

hydrometallurgical industries requires the study of heat 

and mass transfer with chemical reaction. There are 

many transport processes that are governed by the 

combined action of buoyancy forces due to both thermal 

and mass diffusion in the presence of chemical reaction 

effect. These processes are observed in the nuclear 

reactor safety and combustion systems, solar collectors, 

as well as metallurgical and chemical engineering. 

 

Nomenclature   

pK       permeability of the medium  PK  porosity parameter 

K  thermal diffusivity  Mn  magnetic parameter 

cR  elastic parameter    0B  magnetic field strength 

rP  Prandtl number   Q  heat source/sink parameter   

cS  Schmidt number   T   temperature of the field 

T  non-dimensional temperature t  time 

t  non-dimensional time  0k  dimensionless elastic parameter 

  density of the fluid  rq  radiative heat flux   

  kinematics coefficient of viscosity 1k  absorption coefficient  

*  Stefan-Boltzmann constant    electrical conductivity   

pC  specific heat   R  radiation parameter 
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wq  wall heat flux   cE  Eckert number 

w  wall shear stress   fC  skin friction coefficient  

T
 temperature far from sheet   wT  wall temperature 

q dimensional heat source/sink wu  velocity of the sheet  

parameter       

 

Ishak et al [3] investigated theoretically the unsteady 

mixed convection boundary layer flow and heat transfer 

due to a stretching vertical surface in a quiescent viscous 

and incompressible fluid. Mahapatra and Gupta ([4], [5]) 

considered the stagnation flow on a stretching sheet.  

Sammer [6] investigated the heat and mass transfer over 

an accelerating surface with heat source in presence of 

magnetic field. Wang [7] studied the stagnation flow 

towards a shrinking sheet. 

Naseem and Khan [8] investigated boundary layer flow 

past a stretching plate with suction, heat and mass 

transfer and with variable conductivity. Elbashbeshy and 

Bazid [9] studied flow and heat transfer in a porous 

medium over a stretching surface with internal heat 

generation and suction/blowing. Cortell [10] also 

reported the flow and heat transfer of a fluid through 

porous medium over a stretching surface with internal 

heat generation. Anjali Devi and Ganga [11] have 

studied the viscous dissipation effect on nonlinear MHD 

flow in a porous medium over a stretching porous 

surface. 

Mushtaq et al. [12] examined the effects of thermal 

buoyancy on visco-elastic flow of a second grade fluid 

past a vertical, continuously stretching sheet. Numerical 

solutions for the coupled nonlinear partial differential 

are generated by using local non-similarity method and 

Keller-Box scheme. Hayat et al. [13] applied an analytic 

technique, namely homotopy analysis method (HAM), 

to study the steady mixed convection in two dimensional 

stagnation flows of a second grade fluid around a heated 

surface with the wall temperature varying linearly with 

the distance from the stagnation point. An investigation 

has been conducted by Arnold et al. [14] on the visco-

elastic fluid flow and heat transfer characteristics over a 

stretching sheet taking into account the effects of 

frictional heating and internal heat 

generation/absorption. Battaler [15] investigated the 

effect of thermal radiation on heat transfer in a boundary 

layer visco-elastic second order fluid over a stretching 

sheet with internal heat source/sink. Recently, we 

explore the flow of a Jeffery fluid [16-17] over a 

stretched sheet subject to power law temperature  in the 

presence of heat source/sink.  

The present study considers the flow of a visco-elastic 

incompressible electrically conducting fluid flow past a 

stretching sheet through a porous medium in the 

presence of magnetic field, viscous dissipation, uniform 

heat source/sink, surface fluid suction/injection. The aim 

of the following discussion is to bring out the effect of 

permeability of the medium and plate temperature on the 

flow phenomena. 

II. FORMULATION OF THE PROBLEM 

Let us consider for an incompressible visco-elastic fluid 

given by Coleman and Noll [18]: 

2

1 1 2 2 1 ,T pI A A A        (1) 

where T ,the Cauchy tensor, p , the pressure  , the 

viscosity, 1 and 2 are two normal stress moduli with 

1 0   and 1A  and 2A  are first two Rivlin-Ericken 

tensors [19] defined by  

1

1
2 1 1

( )

. ( ) .

T

T

A v v

dA
A A v v A

dt

   



     


  (2) 

Here v  is the velocity,   the gradient operator and 

( / )d dt  the material time derivative. Dunn and Fosdick 

[20] found that the material moduli satisfy the following 

condition 

1 1 20, 0, 0.         (3) 

But for many of the non-Newtonian fluids of 

Rheological interest, the experimental results for 

1 and 2 donot satisfy the restrictions (3). In case of 

second order fluid the material moduli should satisfy  

1 1 20, 0, 0.         (4) 

Generally, in the literature the fluid satisfied the model 

equation (1) with 1 0   is termed as second-order and 

1 0   is termed as second-grade fluid. When 

1 20, 0    and 0,   equation (1) reduces to 

the well-known constitutive relation of an 

incompressible Newtonian fluid. Another class of model 

is the rate-type fluid models, such as Walters B’, which 

presents an approximation to the first order in elasticity, 

i.e. for short or rapidly fading memory fluids. The 

steady two-dimensional boundary layer equations for 

Walters B  were derived by Beard and Walters [21]. 
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Consider the steady two-dimensional boundary layer 

flow of an electrically conducting, visco-elastic fluid 

past over a stretching sheet through porous medium 

coinciding with the plane, the flow being confined to 

two equal and opposite forces are applied along x–axis 

so that the surface is stretched, keeping the origin fixed. 

A uniform magnetic field strength 0B  is imposed along 

y   axis, which produces magnetic effect in the 

x direction. Under the usual boundary layer 

assumptions, the conservation equations of mass, 

momentum and energy for the flow of visco-elastic 

fluid, in the usual notation, can be written as 

0
u v

x y

 
 

 
,   (5) 

22 2 3 2

0 0

2 2 3

P

B u ku u u u u u u
u v u u v

x y y K x y y y x y

 


 

         
        

          
,  (6)  

22

02p

T T T u u u u
C u v K k u v

x y y y y y x y
 

             
          

             
 

     
2 2

0 ( )rq
B u q T T

y
 


   


,   (7) 

Rosseland’s approximation for thermal radiation [15] gives

* 4

1

4

3
r

T
q

k y

 
 


. It is assumed that the temperature 

variation within the flow of is such that
4T  may be expanded in a Taylor’s series. Expanding 

4T  about T  and 

neglecting the higher order terms, we have 
4 3 44 3T T T T   and 

* 3 2

2

1

16

3

r

p

q T T

y k C y




 


 

. 

Therefore equation (7) reduces to 

22

0

2

p p

kT T T u u u u
u v u v

x y y C y C y y x y




 

           
        

           
 

     

2* 3 2
20

2

1

16
( )

3 p p p

BT T q
T T u

k C y C C



  





   


 (8) 

where 1k  is the mean absorption coefficient and the boundary conditions are  

, , ( ) 0

0, 0, ,

w w wu u Ex v v T T x at y

u
u T T as y

y


     


 
    

     (9) 

o

 

,x u
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Fig.1 Physical model and co-ordinate system 
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where E , the positive constant , wv , the suction velocity. 

III. SOLUTION OF THE FLOW FIELD 

Equations (5) and (6) admit self–similar solutions of the form     , Re
Re

x

x

y
f

x





    (10) 

where f is the dimensionless stream function and   is the similarity variable and Re /x wu x   is the local 

Reynolds number .  Substituting in (6), we get 

 2 2 1
2 0iv

c

P

f ff f R f f f ff Mn f
K

 
              

 
,    (11) 

where 0 /cR k E  , the vicso-elastic parameter, 
2

0 /Mn B E  , the magnetic parameter and 
* /p pK K E , 

the permeability parameter.  The corresponding boundary conditions are: 

(0) , (0) 1, ( ) 0, ( ) 0.wf f f f f              (12) 

where Re /w x wf u   is the suction / injection parameter. A positive value of  represents suction and negative 

value stands for injection. The exact solution (9) with boundary conditions (10) is obtained following Chakrabati and 

Gupta [22] in the form  
1

( ) ,
r

w

e
f f

r






        (13) 

where r  is a real positive root of the cubic algebraic equation: 
3 2( 1) (1 1/ ) 0.c w c w pR f r R r f r Mn K            (14) 

IV. SKIN FRICTION 
 The shear stress at the wall is defined as  

0

/ (0)w

y

u
ax a f

y
   



 
  

 
       (15) 

The non dimensional form of skin friction, fC  at the wall is  / / (0)f wC ax a f r       . 

V. HEAT TRANSFER ANALYSIS 
Case I: Power-law Surface Temperature (PST) 

In power-law surface temperature introducing non-dimensional quantities ( )
w

T T

T T
  







, rP /pC K , 

2

( )w

v
Q

T T



 




, 

2 2

,c

p

E L
E

AC


3

116

3 R

T
R

k




 and using equation (10) the equation (8) becomes  

 2 2(1 ) ( 2 ) ( ) ( 1/ )r r c r pR P f P Q f E P f Rc f f ff Mn K f                    (16) 

The boundary conditions are (0) 1, ( ) 0.         (17) 

Introducing the variable 
2(1 )

rPe

R r






 


, equation (16) transformed to  

2

2 2 2

2

(1 ) 2
(1 ) (1 )

(1 )
(1 1/ )

r r

c
c p

r

P PQd d

d R r d R r

E R r
R S Mn K

P

 
  

  



 
     

  


    

   (18) 

with the  boundary conditions  

2
1, ( 0) 0

(1 )

rP

R r
   
 

     
 

       (19) 

Using confluent hyper geometric function we get, 
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 

 

2

* * *
r r

2

2

* *

r

1
(1 /

2,1 ,
( ) 1

(1 )(4 (2 ) ) P 2,1 , P

1
(1 /

(1 )(4 (2 ) ) P

ac c

p

r

c c

p

r

E P R S Mn r
K M a b

R S Q P M a b

E P R S Mn r
K

R S Q P


 



  
                      

 
 

 
         
    

  (20) 

where, 
 

 
2

* * *
2r r r * * * r

r r r 2

P P 4P P
, P 4P ,P , 1

2 (1 )
w

S S Q
a b S Q S rf

R r

 
     


 

and 1 2( , ; )M x   denotes the Kummer’s Function 

 

 
1

1 2 2

0 2

( , ; ) , 0, 1, 2.....
!

n

n

n n

x
M x

n


  







         (21) 

where  
n

  denoting the Pochhammer symbol defined in terms of the gamma function. 

The temperature profile in terms of   is obtained as 

 
 

2

*

r

* *

r

2

2

*

1
(1 /

2,1 , P
( ) 1

(1 )(4 (2 ) ) 2,1 , P

1
(1 /

(1 )(4 (2 ) )

c c r

p ar

r

c c

p r

r

E P R S Mn r
M a b eK

e
R S Q P M a b

E P R S Mn r
K

e
R S Q P







 







  
                 

 
 
 

 
    

 
  

  (22) 

The local Nusselt number is derived as  
1/2Re (0).x xNu     

Case II: Power-law Heat Flux Case (PHF) 

In case of PHF, introducing the similarity variable 

2

0 ( )
E x

T T
K a


    and using equation (10), equation (8) 

becomes  

   2 2(1 ) P P 2 P ( ) ( 1/ )r r c r pR f Q f E f Rc f f ff Mn K f                   (23) 

The boundary conditions are  

(0) 1, ( ) 0              (24) 

The Eckert number for the PHF case is given by 

2 2 /
c

p

E L K E
E

BC


  and the other parameters are as defined in the 

PST case. Substituting 
2(1 )

rPe

R r






 


 into equations (23) and (24) yields 

2

2 2 2

2

2

(1 ) 2
(1 ) (1 )

1/(1 )
(1 )

r r

pc
c

r

P PQd d

d R r d R r

Mn KE R r
R S

P r

 
  

  



 
     

  


   

   (25) 

The boundary conditions are  
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2(1 ) (1 )
( 0) 0, ( )

P Pr r

R r R r
   

 
           (26) 

The exact solution of (25) subject to the boundary conditions (26) can be written in terms of confluent hyper geometric 

function with similarity variable   and is given by 

 

   

2

*

r

*
* * *

r r r

2

2

*

1
(1 /

2,1 , P
( ) 1/ 2

2(1 )(4 (2 ) )
2,1 , P P 1,2 , P

1

1
(1 /

(1 )(4 (2 ) )

c c r

p ar

r

c c

p r

r

E P R S Mn r
M a b eK

r e
aR S Q P

aM a b M a b
b

E P R S Mn r
K

e
R S Q P







 







  
               

       
 

 

 
    

 
  

 (27) 

The local Nusslt number for PHF case can be expressed as  
1/2Re 1/ (0).x xNu    

VI. NUMERICAL SOLUTION 

The set of nonlinear coupled differential equations (11), 

(16) and (23) subject to the boundary conditions 

equations (12),(17) and (24) respectively constitute a 

two point boundary value problem. In order to solve 

these equations numerically we follow most efficient 

numerical shooting technique with sixth order Runga-

Kutta scheme. In this method it is most important to 

choose the appropriate finite values of    . To 

select  we begin with some initial guess value and 

solve the problem with some particular set of parameters 

to obtain (0), (0), (0)f f    and (0)  . The 

solution process is repeated with anther large values of  

  until two successive values of 

(0), (0), (0)f f    and (0)  differ only after 

desired digit signifying the limit of the boundary along 

 . The last value of  is chosen as appropriate value 

of the limit    for that particular set of 

parameters. The procedure is repeated until we get the 

results upto the desired degree of accuracy, 
610

.  

VII. RESULTS AND DISCUSSION 

The present study considers the flow of a visco-elastic 

incompressible electrically conducting fluid flow past a 

stretching sheet through a porous medium in the 

presence of  magnetic field, viscous dissipation, uniform 

heat source/sink, surface fluid suction/injection. The aim 

of the following discussion is to bring out the effect of 

permeability of the medium and plate temperature on the 

flow phenomena. The heat generation/absorption 

contributes significantly for non-isothermal heat transfer 

case. Another consideration of the present study is the 

saturated porous media. Porous media are very widely 

used to insulate a heated body to maintain its 

temperature. They are considered to be useful in 

diminishing the natural free convection which would 

otherwise occur intensely on the vertical surface.  
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Fig. 1(a) presents the effect of suction/injection 

parameter on transverse velocity profile for 0.5Mn   

and for a second grade fluid 1cR  . It is observed that 

the higher values of wf  enhance the velocity profile at 

all points in both the absence of pK (i.e. 100pK  ) 

and presence of pK (i.e. 0.5pK  ). 

The effect of suction / injection on the longitudinal 

velocity profile in both the medium is illustrated in Fig. 

1(b) for a second grade fluid with 1cR  . In 

comparison to the impermeable sheet ( 0wf  ), it is 
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seen that suction ( 0wf  ) reduce the boundary layer 

thickness causes a decrease in velocity, where as 

injection ( 0wf  ) increases the velocity profile in both 

presence / absence of porous matrix. 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8


Fig. 2 (a) Effect of R

c
 on Transverse velocity profile

f(


)

R
c
= -0.2 R

c
=0.0

R
c
=0.2

K
p
 =100

K
p
 =0.5

 

The effect of visco-elastic parameter cR  on the 

transverse velocity profile is shown in Fig. 2(a)for 

1, 0wMn f  . It is clear that 0cR  , the viscous 

fluid, 0cR   stands for second-grade fluid and 0cR   

represents Walters liquid B . In the absence of porous 

matrix pK ( 100pK  ), velocity of the fluid decreases 

with increase of visco-elastic parameter. The similar 

effect is noticed in the presence of pK ( 0.5pK  ). As 

compared to the viscous fluid ( 0cR  ), the velocity 

decreases with increase in cR (i.e. in case of second 

grade fluid, 0cR  ) but the reverse trends follows with 

decrease in cR (i.e. in case of Walters liquid 

B , 0cR  ). 
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Fig.2(b) reveals the effect of visco-elastic parameter on 

longitudinal velocity profile for 1, 0wMn f   in 

both absence/presence of porous matrix. In the absence 

of porous matrix, the velocity boundary layer thickness 

decreases with decrease in the value of cR . It is 

interesting to note that the reverse effect is observed in 

the presence of pK . 

Figs. 3(a) and 3(b) exhibit the variation of cR on 

temperature profile in both PST and PHF case 

respectively, keeping 

3, 1, 0.1, 1, 0, 0r c wP Mn E R s f       as 

fixed. It is observed that an increase in temperature due 

to the presence of elastic elements may be attributed to 

the fact that when an a visco-elastic fluid is in flow, a 

certain amount of energy is stored up in the material as 

strain energy in addition to viscous dissipation. In the 

absence of porous matrix pK ( 100pK  ), temperature 

of the fluid increases with increase of visco-elastic 

parameter. The similar effect is noticed in the presence 

of pK ( 0.5pK  ). In comparison to the viscous fluid 

( 0cR  ), the temperature increases as increase in 

cR (i.e. in case of second grade fluid, 0cR  ) but the 

reverse effect was found in decrease of cR (i.e. in case 

of Walters liquid B , 0cR  ). From fig.3(a) and 3(b), 

it is seen that the thermal boundary layer  is asymptotic 

in nature. 
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With the fixed values of 

3, 1, 1, 1, 0, 0r c wP Mn R R S f      , effects 

of cE  on temperature profile in both PST and PHF case 

respectively are obtained from Fig. 4(a) and 4(b). An 

increase in cE  means more amount of heat energy is 

stored due to frictional heating leads to increase the 

temperature at all points in both PST and PHF case. In 
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the absence of 
pK ( 100pK  , bold curves) and the 

presence of  pK ( 0.5pK  , dotted curves)  

temperature profile increases, in case of second grade 

fluid ( 1cR  ),  as the value of the Eckert number 

increases. 
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The dimensionless temperature profiles are presented for 

different values of Radiation parameter R  for both PST 

and PHF cases with the fixed vales of other parameters 

e.g., 3, 1, 0.1, 0.5, 1r n c cP M E R Q     in Fig. 

5(a) and 5(b), respectively, in the absence/presence of 

porous matrix. A significant enhancement in the 

temperature profile is produced by increasing the 

thermal radiation parameter R . The thermal boundary 

layer thickness increases in both the presence/absence of 

pK  as well as wall temperature gradient decreases in 

PST case and surface temperature increases in PHF case. 

The results point out that thermal radiation is to reduce 

the heat transfer rate from the surface and thus, the 

radiation should be diminish to have the cooling process 

at a faster rate.      
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In absence/presence of 
pK  the effect of internal heat 

generation/absorption parameter  Q  on the temperature 

distribution for PST and PHF cases with fixed values of 

the parameters 

3, 1, 0.1, 0, 0.5r n c c wP M E R f      is 

depicted through in Fig. 6(a) and 6(b). It is noticed that 

in case of heat source ( 0Q  ), The energy generated in 

the thermal boundary layer causes the temperature 

profile to increase with the increasing value of Q , 

whereas in case of sink ( 0Q  ) the temperature profile 

decreases with increasing the strength of heat absorption 

in both the absence of pK ( 100pK  ) and presence of 

pK  ( 0.5pK  ). 

Table-1: Skin friction coefficients for impermeable 

surface ( 0wf  ) 

 

Mn Kp Rc    

1 100 -0.5 2.004993766 

1 100 0 1.417744688 

1 100 1 1.002496883 

1 0.5 1 1.414213562 

0.5 100 1 0.86890736 

0.5 0.5 1 1.322875656 

1 0.5 -0.5 2.828427125 

From table 1 it is seen that an increasing magnetic 

parameter increases the skin friction and it is further 

increased by presences of porous matrix but the effect of 

elasticity is to decrease it. Thus, it is concluded presence 

of elastic elements each favourable in reducing the skin 

friction.  

 

Table-2: Nusselt number For Walters liquid B  in absence of suction/blowing. 

rP  cR  Mn  pK  Q  R  PST case PHF case 

1 0 0 100 0 0 1.3333 0.750789 

1 0 0 100 -0.1 0 1.3777965 0.7251 

1 0 0 0.5 0 0 1.1268985 0.887391 

1 0 0 0.5 -0.1 0 1.1993937 0.833755 

1 0 1 100 0 0 1.2158 0.823201 

1 0 1 100 -0.1 0 1.274028 0.7843 

1 0 1 0.5 0 0 1.0553613 0.947543 

1 0 1 0.5 -0.1 0 1.1403947 0.876889 

1 -0.1 0.1 100 -0.1 0 1.3521 0.7395 

1 -0.1 0.1 100 0 0 1.3035 0.7671 

1 -0.1 0.1 100 0.1 0 1.2496 0.8002 

1 -0.1 0.1 0.5 -0.1 0 1.1715398 0.853577 

1 -0.1 0.1 0.5 0 0 1.0933434 0.914626 

1 -0.1 0.1 0.5 0.1 0 0.9713764 1.026597 

1 -0.1 0.1 100 -0.1 1 0.8812 1.1348 

1 -0.1 0.1 0.5 -0.1 1 0.7223855 1.384303 

2 -0.1 0.1 100 -0.1 0 2.021 0.4928 

2 -0.1 0.1 0.5 -0.1 0 1.1715398 0.853577 

3 -0.1 0.1 100 -0.1 0 2.5326 0.3926 

3 -0.1 0.1 0.5 -0.1 0 2.3570593 0.424257 

 

Table 2 and 3 reveal the comparison of temperature 

gradients for second grade and second order fluids in 

PST and PHF cases respectively. From table 2, it is 

observed that in the absence of porous matrix and 

magnetic parameter with higher Prandtl value Nusselt 

number increases irrespective of source/sink in PST case 

whereas, the reverse effect is observed in PHF case. 

Further, it is seen that the presence of porous matrix 

attains the reverse trends in both PST and PHF cases. It 

is interesting to note that presence of magnetic 

parameter causes to decrease the Nusselt number in PST 

case and increase the same in PHF case in 

presence/absence of porous matrix and source/sink. 
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Thus, it is concluded that the characteristics of Nusselt 

number are obtained in the permeable surface ( 0wf  ) 

without thermal radiation( 0R  ) for second grade 

fluid. From table 3 it is observed that in the absence of 

porous matrix with high 
rP  Nusselt number increases in 

PST case and decreases in PHF case and the reverse 

effect is accomplished in the presence of the porous 

matrix but increasing value of magnetic parameter, 

presence/absence of source/sink parameter and thermal 

radiation parameter cause the reverse effects in both 

PST and PHF cases. Therefore, the rate of heat transfer 

is sensitive to the presence of porous matrix, magnetic 

parameter and thermal radiation parameter causes 

instability in the rate of heat transfer phenomena. 

 

Table-3: Nusselt Number For a second grade fluid with 1, 0.2, 0c cR E R    and 0wf  . 

Mn  pK  Q  rP  PST case PHF case 

0.0 

100 -0.1 1 1.372608 0.7435 

100 -0.1 10 4.591724 0.277832 

0.5 -0.1 1 1.032946 0.975079 

0.5 -0.1 10 3.249158 0.536112 

100 0 1 1.331574 0.765383 

100 0 10 4.478859 0.28568 

0.5 0 1 0.974733 1.019901 

0.5 0 10 3.103711 0.55611 

100 0.1 1 1.288637 0.789645 

100 0.1 10 4.362827 0.294189 

0.5 0.1 1 0.906795 1.077075 

0.5 0.1 10 2.952014 0.578134 

1.0 

100 -0.1 1 1.181325 0.868455 

100 -0.1 10 3.87202 0.414209 

0.5 -0.1 1 0.906259 1.073528 

0.5 -0.1 10 2.676623 0.65084 

100 0 1 1.131589 0.901256 

100 0 10 3.741224 0.428464 

0.5 0 1 0.839487 1.132026 

0.5 0 10 2.518129 0.67632 

100 0.1 1 1.077335 0.939725 

100 0.1 10 3.605617 0.444078 

0.5 0.1 1 0.75274 1.216857 

0.5 0.1 10 2.352002 0.704501 

 

VIII. CONCLUSION 

In this paper, the flow of a visco-elastic incompressible 

electrically conducting fluid flow past a stretching sheet 

through a porous medium in the presence of  magnetic 

field, viscous dissipation, uniform heat source/sink, 

surface fluid suction/injection has been investigated. 

With the help of appropriate transformation, the 

governing boundary layer equations for momentum and 

thermal energy for both PHF and PST cases are reduced 

to coupled nonlinear ordinary differential equations 

which are then solved numerically using the shooting 

method and comparison has been made with that of 

confluent hypergeometic function. As a summary, we 

can conclude that  

 Presence of porous matrix enhance the velocity 

because porous matrix act as insulator to the 

vertical surface preventing energy loss due to free 

convection. 

 The resistive force of magnetic field is overcome 

due to the presence of porous matrix and elasticity 

of the fluid and hence the velocity increases due to 

the presence of both. 

 Further, absence of magnetic field and porous 

matrix leads to transitory motion of the fluid. 

 Presence of elasticity also leads to increase the 

temperature at all points but the presence of 

magnetic field reduce it. 
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 The thinning of thermal boundary layer thickness is 

due to slow rate thermal diffusion in presence of 

magnetic field and porous matrix. 

 The variation in temperature is more sensitive due 

to presence of heat flux. 

 Presence of elastic element is favorable in reducing 

the skin friction. 

 The effect of porous matrix is duly compensated 

enhancing the magnetic strain in the absence of 

porous matrix on the rate of heat transfer. 

 The rate of heat transfer in the present study is 

sensitive to the presence of porous matrix and 

magnetic parameter. 
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