
International Journal of Recent Advances in Engineering & Technology (IJRAET)

__
ISSN (Online): 2347 - 2812, Volume-8, Issue -1, 2020

16

Analysing Compression Performance for Real Time Database Systems

1M. Muthukumar & 2T. Ravichandran

1Karpagam University, Coimbatore, Tamilnadu-641021, India,
2Hindusthan Institute of Technology, Coimbatore, Tamilnadu-641032, India

Abstract - Database compression and decompression
is a susceptible problem in the database framework.
Database compression is widely used in data
management to improve the performance and save
storage space. When you have large amounts of data,
the cost of the storage subsystem can easily exceed
the cost of your data server. Over the last decades,
improvements in CPU speed have outpaced
improvements in main memory and disk access rates
by orders of magnitude, enabling the use of database
compression techniques to improve the performance
of database systems.

In this paper, we outlined the new techniques to
analyse the database compression performance for
real time database systems. This proposed technique
not only reduces space requirements on disk and I/O
performance, they also reduce the utilization of
memory, thus reducing the number of buffer faults
resulting in I/O. This algorithm enables more
granular, enhances the compression and
decompression performance.

Index Terms – compression performance, database
performance, database compression, database
decompression, real-time database

I. INTRODUCTION

My previous work describes how to optimize and
enhance the database compression for real time database
systems [1]. This work outlines an effective approach to
analyse the compression performance for real time
database systems. This can be achieved by exploiting
efficient algorithm of Hierarchical Iterative Row-
Attribute Compression (HIRAC).The algorithm has
different performance behaviour as a function of dataset
parameters, sizes of outputs and main memory
availability. The analysis and experimental results show
that the algorithms have better performance than the
traditional algorithms.

Computing database compression is a big challenge. Our
goal is to develop effective and efficient algorithms to
compress the large size databases. This paper presents
the efficient algorithm for very large compressed

database. The algorithm has different performance
behaviour as a function of dataset parameters, sizes of
outputs and main memory availability. The algorithm is
described and analysed with respect to the I/O, memory
and performance. A decision procedure to select the
most efficient algorithm given and aggregation request
is also given. The analysis and experimental results
show the proposed HIRAC algorithm compare
favourably with previous algorithms.

The very large scale databases normally have very large
size and a high degree of scarcity. That has made
database compression as very important. Research in
this area has considered various aspects of the problem
such as developing a model for database compression,
decompression and maintaining them. Proposed
approach presents a different challenge in database
compression and decompression era.

A large number of compression schemes and techniques
have been devised based on large database. The
advantageous effects of data compression on I/O
performance in database systems are rather obvious, i.e.,
its effects on disk space, bandwidth, and throughput.
However, we believe that the benefits of compression in
database systems can be observed and exploited beyond
I/O performance. Database performance strongly
depends on the amount of available memory, be it as I/O
buffers or as work space for HIRAC algorithms.
Therefore, it seems logical to try to use all available
memory as effectively as possible in other words, to
keep and manipulate data in memory in compressed
form. In this report, we introduced techniques to
demonstrate their effect on database performance.

The size of the compressed backup is smaller than that
of the uncompressed backup, which results not only in
space savings, but also in fewer overall I/O operations
during backup and restore operations. The amount of
space you save depends upon the data in the database,
and a few other factors, such as whether the tables and
indexes in the database are compressed, and whether the
data in the database is encrypted.

The compression rates that can be achieved for any
dataset depend, of course, on the attribute types and

International Journal of Recent Advances in Engineering & Technology (IJRAET)

__
ISSN (Online): 2347 - 2812, Volume-8, Issue -1, 2020

17

value distributions. For example, it is difficult to
compress binary floating point numbers, but relatively
easy to compress English text by a factor. In the
following, we do not require that all data is English text;
we only require that some compression can be achieved.
Since text attributes tend to be the largest fields in
database files, we suspect that expecting an overall
compression factor is realistic for many or even most
database files. Optimal performance can only be
obtained by judicious decisions which attributes to
compress and which compression method to employ.

The rest of the chapters, we briefly indicate related
work. In Section 3, we illustrate the proposed algorithms
to manipulate database compression. Section 4 contains
a various algorithms used for analysing the performance
of areal time database systems. The experimental
evaluations are presented in section 5 and performance
results are presented in section 6. Conclusions are
presented in section 7.

II. RELATED WORK

The compression of database systems for real time
environment is developed with our proposed HIRAC
algorithm. It provides good compression while allowing
access even at attribute level [1]. Optimal multi storage
parallel backup for real time database systems by using
Parallel Multithreaded Pipeline (PMP) algorithm to store
compressed database at multiple devices in
parallel[2].Compression reduces both the number and
size of records written to temporary files, resulting in a
reduction of I/O costs on temporary files by a factor of
six [3]. This technology trend has enabled the use of
data compression techniques to improve performance by
trading reduced storage space and I/O against additional
CPU overhead for compression and decompression of
data [4].

Order-preserving methods have considerable CPU
overhead that offsets the performance gains of reduced
I/O, making their use in databases infeasible
[5].Significant part of the compression time is used for
memory accesses. It is impossible to make a general
statement how the time required for one memory access
compares to the time for one computation [6].

A number of researchers have considered text
compression schemes based on letter frequency, as
pioneered by Huffman. Other recent research has
considered schemes based on string matching [7]
Comprehensive surveys of compression methods and
schemes are given in. Others have focussed on fast
implementation of algorithms, parallel algorithms and
VLSI implementations [8].

Few researchers have investigated the effect of
compression on database systems and their performance
[9]. Other researchers have investigated compression
and access schemes for scientific databases with very
many constants and considered a very special operation
on compressed data [10].

III. DATABAE COMPRESSION FOR REAL

TIME DATABASE SYSTEMS

One of the big challenges in the world was the amount
of data being stored, especially in Data Warehouses.
Data stored in databases keep growing as a result of
businesses requirements for more information. A big
portion of the cost of keeping large amounts of data is in
the cost of disk systems, and the resources utilized in
managing the data. In this section, we outline how
compression can be exploited in database systems, and
how proposed algorithms used for optimizing the
compression for real time data base systems.

3.1 HIRAC Algorithms

The compression of database systems for real time
environment is developed with our proposed
Hierarchical Iterative Row-Attribute Compression
(HIRAC) algorithm, provides good compression, while
allowing access even at attribute level. HIRAC
algorithm repeatedly increases the compression ratio at
each scan of the database systems. The quantity of
compression can be computed based on the number of
iterations on the rows. To compress database, an
algorithm is presented here called HIRAC algorithm
which iteratively enhances the collection of selected
representative rows. From one step to the next, new
representative rows may be chosen, and old ones
discarded. Since the endeavour of a compression
algorithm is to decrease the storage constraint for a
database, Compression openly utilize this as an
optimization principle and guarantee that only patterns
which progress the compression are established in each
step of its iterations. Though the optimization problem is
hard in an existing compression algorithms case as well,
the heuristic used in this simple. HIRAC algorithm
approach provides much lower time complexity contrast
to an existing technique.

The proposed HIRAC with parallel multi-storage backup
for real time database systems comprises of three
operations. The first operation is to identify and analyze
the entire database, the next step is to compress the
database systems to take up as backups and the last step
is to store the compressed backups in multiple storages
in parallel.

The first phase is to analyze the database based on the
environment in which it creates. At forts, the attributes
present in the database systems are analyzed and identify
the goal of the database creation and maintain a set of
attributes and tables maintained in the database systems.

The second phase describes the process of taking the
backup of database system by compressing the database
using Hierarchical Iterative Row-Attribute Compression
(HIRAC). The HIRAC algorithm is used to provide a
good compression technique by allowing access to the
database level and enhances the compression ratio for a
ease backup of database systems.

International Journal of Recent Advances in Engineering & Technology (IJRAET)

__
ISSN (Online): 2347 - 2812, Volume-8, Issue -1, 2020

18

The third phase describes the process of storing the
compressed backups at different levels of storages in
parallel. Since it has been stored at multi-storage
devices, the copy of compressed backups is always
available at any system, there is less chance of database
systems to be lost and can easily be recovered.

3.2 ILC Algorithm

Iterative Length Compression (ILC) algorithm provide
the solution to how to optimize and enhance the process
for compress the real time database and achieve better
performance than conventional database systems. This
algorithm provides a solution to compress the real time
databases more effectively, reduce the storage
requirements, costs and increase the speed of backup.
The compression of database systems for real time
environment is developed with our proposed ILC
algorithm.

Data compression significantly increases CPU usage,
and the additional CPU consumed by the compression
process might adversely impact concurrent operations.
On the plus side, backup sizes and backup/restore
elapsed times can be greatly reduced. Database
compression offers the following benefits.

 Reducing Storage Requirement

 Data Transfer Rate

 Enhancing Data Security

 Backup and Recovery

 Performance Enhancement

ILC algorithm provides the solutions for the above
issues and repeatedly increases the compression ratio at
each scan of the database systems. The quantity of
compression can be computed based on the number of
iterations on the rows. When introducing data
compression technology into real-time database, two
requests must be satisfied. First, the compression
algorithm must provide high compression radio to
realize large numbers of data storage in real-time
database. Second, the compression algorithm must fast
enough to satisfy the function of real-time record and
query in real-time database.

IV. ANALYSING DATABASE

COMPRESSION PERFORMANCE

Database compression can be exploited far beyond
improved I/O performance. If the database contains
compressed values, it is trivial to include compressed
values in the log. In other words, compressing the
database values also reduces the size of log records and
therefore the I/O traffic to log devices. Thus,
compressing database values improves I/O performance
on both the primary database and the log. It is
conceivable that the savings in logging alone justify the
overhead of compressing database values to be entered
into the database.

The goal of database compression is to represent the
information with as few bits as possible. Therefore, each
bit in the output of a good compression scheme has close
to maximal information content, and bit columns seen
over the entire file are unlikely to be skewed.
Furthermore, bit columns will not be correlated. In a
simple performance comparison, we have seen that for
data sets larger than memory performance gains larger
than the compression factor can be obtained because a
larger fraction of the data can be retained in the
workspace allocated to a query processing operator.
Most obviously, compression can reduce the amount of
disk space required for a given dataset. This has a
number of ramifications on I/O performance.

First, the reduced data space fits into a smaller physical
disk area therefore, the seek distances and seek times are
reduced. Second, more data fit into each disk page, track
and cylinder, allowing more intelligent clustering of
related objects into physically near locations. Third, the
unused disk space can be used for disk shadowing to
increase reliability, availability, and I/O performance.
Fourth, compressed data can be transferred faster to and
from disk. In other words, data compression is an
effective means to increase disk bandwidth, not only by
increasing physical transfer rates but by increasing the
information density of transferred data and to relieve the
I/O bottleneck found in many high-performance
database management systems. Fifth, in distributed
database systems and in client-server situations,
compressed data can be transferred faster across the
network than uncompressed data. Uncompressed data
require either more network time or a separate
compression step. Finally, retaining data in compressed
form in the I/O buffer allows more records to remain in
the buffer, thus increasing the buffer hit rate and
reducing the number of I/Os.

The last three points are actually more general. They
apply to the entire storage hierarchy of tape, disk,
controller caches, local and remote main memories, and
CPU caches. If storage space on all levels is used more
efficiently, bandwidth is saved when moving data up or
down in the hierarchy, when moving data laterally
between memories and caches, and by achieving a
higher hit rate at each level. Reducing the amount of bus
traffic in shared-memory systems might also allow
higher degrees of parallelism without bus saturation.

The compression cost of each operator includes the CPU
cost and the I/O cost. The CPU cost depends on the CPU
speed, the compression method, and the input result size.
The I/O cost includes the cost for reading the input and
writing the output, which can be saved if the plan is
pipelined in a unit that can be held in memory. For a
serially executed plan, the compression cost equals the
sum of the cost for each operator.

The decompression cost depends on the compression
plan and the client’s access pattern of the result. If the
client decompresses the query result immediately, the
decompression cost is just the cost to decompress the

International Journal of Recent Advances in Engineering & Technology (IJRAET)

__
ISSN (Online): 2347 - 2812, Volume-8, Issue -1, 2020

19

whole result. It can be computed by adding up the cost
for individual operators. If the client stores the result in a
compressed form and needs N random accesses to
certain units the decompression cost equals the cost to
decompress.

V. EXPERIMENTAL EVALUATION

In this work we associated the compression performance
for real time database systems using traditional and
proposed algorithms. We used a real time 1GB sample
database for a trialling to examine the efficiency of the
system performance. We have outlined a number of
performance effects of database compression in the next
section in order to examine the efficiency of the
proposed HIRAC algorithm.

System Component Description

Processors Intel® Core 2 Duo
CPU

P-IV 2 GHz Processer

Memory 3 GB memory

Operating System Microsoft Windows
XP Professional
Version 2002

Service Pack 3

Database Manager Microsoft SQL Server
2008 Enterprise
Edition (64 bit)

Database Size 1 GB

Table 1: System Components

The proposed HIRAC based compression model for real
time environment is efficiently designed for
compression and taking backup compressed data with
the database systems.

Most systems already employ "log compression" by
saving only log records of committed transactions when
archiving log devices on inexpensive storage media. In
addition to these methods, we propose an inexpensive
technique to reduce log traffic earlier in the process,
namely before a log record is first written to disk.
Compression not only improves I/O performance and hit
rates at each "buffering" level in the storage hierarchy, it
also can be exploited in database query processing
without much change to implemented algorithms. Table
1 describes the details about system configuration used
for analysing the compression performance.

VI. RESULTS AND DISCUSSION

The CPU cost for backup compression is significant and
can impact concurrent operations unless some means is
used to limit backup CPU usage. Database tables and

indexes to be compressed generally should be chosen to
reduce overall I/O rates and thus have a minimal impact
on performance, unless spare CPU cycles are available.
Database compression is effective in general, even with
an already compressed database and reduces both
storage and elapsed times for backup and restore.

Database compression affects the page on disk and in
memory. It does not change the logical attributes of the
data or the way it is presented by the database, so there
are no changes visible to the application. Data
compression requires more processing for select, insert,
and update than for uncompressed data. Furthermore,
compression is generally more expensive than
decompression.

Compressing large database consume significant I/O
volume, improve their memory caching and reduce the
I/O volume enough to compensate for the
compression/decompression overhead, thus reducing
storage costs without undue change in performance. In
certain I/O-bound situations, data compression can even
improve overall performance.

6.1 Disk I/O Reduction and Performance Impact

When HIRAC compression is used, there is a multi-way
trade-off involved between disk, buffer pool, I/O
reduction and performance (loss due to
compression/decompression overhead, but gain due to
lower I/O rate). Generally analysing the database
performance can be divided into three sections on I/O
performance and buffering, transaction processing, and
query processing. For transaction processing, there will
probably be two main effects of compression. First, the
buffer hit rate should increase since more records fit into
the buffer space. Second, I/O to log devices should
decrease since the log records can become shorter. The
results below show performance of disk I/O ratios and
storage utilization.

Compression Types Disk I/O
Reduction
(%)

Performa
nce
Ratios

Uncompressed 100 1.00

RLE Compression 89 1.12

Dictionary
Compression

84 1.19

ILC Compression 77 1.30

HIRAC Compression 71 1.41

Table 2: Disk I/O Reduction and

Performance Ratios

The above table (table 2) described the disk I/O
reduction and performance ratio based on real time

International Journal of Recent Advances in Engineering & Technology (IJRAET)

__
ISSN (Online): 2347 - 2812, Volume-8, Issue -1, 2020

20

sample database. The performance efficiency of
compression using the proposed HIRAC algorithm is
compared with existing compression algorithms. The
following graph shows bigger I/O reduction and large
improvements with proposed algorithm.

Fig. 1: Compression Types and Space Disk I/O
Reduction

It is very encouraging to observe in this graph that very
moderate compression factors reduce the total I/O cost
significantly. Even if some additional cost is incurred for
decompressing output data, the performance gain
through compressed permanent and temporary data on
disk and in memory far outweighs the costs of
decompression.

Performance improved due to lower I/O rates and
improvement in memory utilization. Note that the effect
on performance was much more dramatic with less
memory. Fig. 2 describes the process of performance
based on different types of existing and proposed
compression algorithms. Compared to an existing
compression algorithm the proposed HIRAC algorithm
achieves good performance ratios and the variance
would be about 40% better.

Fig. 2: Compression Types and Performance Ratio

The above graph shows performance improvement and
these results demonstrate that at least some I/O bound

situations have the potential for dramatic gains through
use of data compression.

6.2 Memory Usage

The memory usage required to make compressed
backups can be significantly less because the size of
compressed backups are smaller and there are fewer
writes to the backup media. If memory is very limited in
a system, it might be more important to allocate it to
operators that may be able to run without overflow, and
to use memory there with maximal efficiency.

Compression Types Average Memory Usage

Uncompressed 20762 K

RLE Compression 17648 K

Dictionary Compression 16559 K

ILC Compression 13756 K

HIRAC Compression 12458 K

Table 3: Compression and Average Memory Usage

The graph below shows that in situations where the
system memory is insufficient for a large enough buffer
pool, resulting in an I/O bound configuration that cannot
keep the processors completely busy, being able to
HIRAC compression the memory performance can
improve dramatically.

Fig.3: Compression Types and Memory Usage

Figure 3 shows the memory usage for large database. As
in the above figures, even a small amount of
compression improves the performance significantly.
However, for small memory sizes compared to the build
input, the effect of fitting more compressed records than
uncompressed records in memory is not as strong as for
medium-size relations.

VII. CONCLUSION

In conclusion, direct manipulation of database
compression is an important for managing very large
data warehouses. The key ideas are to compress
attributes individually, to employ the same compression

International Journal of Recent Advances in Engineering & Technology (IJRAET)

__
ISSN (Online): 2347 - 2812, Volume-8, Issue -1, 2020

21

scheme for all attributes of a domain and to perform data
manipulations before compressing the data. Proposed
approaches provides significant gains in cost model that
takes memory performance, I/O benefits of compression
and the CPU overhead of decompression into account.

The analysis and experimental results show that the
proposed HIRAC algorithms have better performance
than the traditional algorithms. Furthermore,
implementing our techniques for database compression
is also very easy.

VIII. REFERENCES

[1] M.Muthukumar and T.Ravichandran, Optimizing
and enhancing parallel multi storage backup
compression for real-time database systems,
IJECTA, ISSN: 2229-6093, Volume3 Issues4,
Pages 1406-1417, July 2012.

[2] M.Muthukumar and T.Ravichandran, Optimizing
multi storage parallel backup for real time
database systems, IJESAT, ISSN: 2250-3676:
Volume2 Issues5, Pages 1515-1521, Sep 2012.

[3] G. Graefe and L. Shapiro.Data compression
anddatabase performance.In ACM/IEEE-CS
Symp. OnApplied Computing, pages 22–27,
April 1999.

[4] Kesheng, W., J. Otoo and S. Arie, 2006.
Optimizing bitmap indices with efficient

compression, ACM Trans. Database Systems, 31:
1-38.

[5] ShivnathBabu, Minos N. Garofalakis, and Rajeev
Rastogi. Spartan: Amodel-based semantic
compression system for massive data tables.
InSIGMOD’2001, 2001.

[6] Peter A. Boncz, Stefan Manegold, and Martin L.
Kersten. Databasearchitecture optimized for the
new bottleneck: Memoryaccess. In Proc.of
VLDB, pages 54–65, 2004.

[7] KaushikChakrabarti, Minos N. Garofalakis,
Rajeev Rastogi, andKyuseok Shim. Approximate
query processing using wavelets. InVLDB’2000,
pages 111–122, 2000.

[8] S. Amer-Yahia and T. Johnson.Optimizing
queries oncompressed bitmaps. In Proc. of
VLDB, pages329–338, 2000.

[9] G. Ray, J. R. Harista, and S. Seshadri.
Databasecompression: A performance
enhancement tool. In the7th Int’l Conf. on
Management of Data (COMAD),Pune, India,
1995.

10] Graefe, G., "Query Evaluation Techniques
forLarge Databases", ACM Computing Surveys,
25(2),2003.

