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Abstract -The paper presents a comparative assessment of  Blind Source Separation (BSS) methods for instantaneous mixtures based 

on namely generalized eigen-value decomposition, geometrical concepts, differential of mutual information and Kalman filtering 

applied to Nonlinear Principal Component Analysis (Nonlinear PCA). The methods highlight the independence concept underlying 

Independent Component Analysis (ICA). The methods have been tested on instantaneous mixtures of synthetic periodic signals, 

monotonous noise from electromechanical systems and speech signals. A comparison among the methods has been made on the basis 

of separation ability, processing time and accuracy. The quality of output, complexity of algorithms and simplicity (implementation) 

of the methods are some of the performance measures which have been highlighted with respect to the above signals.  
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I. INTRODUCTION 

Blind Source Separation (BSS) has been a topic of 

interest in signal processing since last few years due to 

its potential applications in areas like speech processing, 

array signal processing, biomedical signal processing, 

image processing and telecommunications [13-17, 25, 

27]. The problem of source separation concerns 

extracting source signals from their mixtures, which are 

observations at the output of a set of sensors each, 

receiving a different combination of the source signals. 

The term „blind‟ is frequently used to indicate that no 

precise information is available of either the mixing 

process or the sources. This feature makes the BSS 

technique extremely versatile because it does not rely on 

modeling the underlying physical phenomena thus 

making it useful in many applications where the 

underlying physical phenomena are difficult or 

impossible to be modeled accurately. 

We briefly describe four methods on which our study is 

based. These methods were selected because they are 

different from conventional and somewhat more recent 

among the approaches to solve the BSS problem. This 

paper is organized as follows. Section 2 discusses the 

basic BSS model. Section 3 presents the first BSS 

method where source separation problem is formulated 

as a generalized eigen-value decomposition problem 

under certain assumptions [1,21,26,28]. The second 

method on BSS based on geometrical concepts is 

described in Section 4 [2]. The third method derived 

from „differential of mutual information‟ for blind 

source separation in linear mixtures is described in 

Section 5 [3, 22, 23, 24]. The last method in Section 6 

describes a Kalman filtering algorithm applied to 

Nonlinear Principal Component Analysis for blind 

source separation of pre-whitened data [4,18-20]. 

Section 7 contains the results for both self generated 

data and real world data. The last section contains the 

conclusion and discussion on performance related 

issues. 

II. BASIC BSS MODEL 

Most of the linear BSS models in the simplest form can 

be expressed algebraically as: 

NkforknkAskx ,.......3,2,1)()()(     (1) 

where,  )(),......,(),()( 21 kxkxkxkx m is a vector 

of observed signals at the discrete time instant k. 

 )(),.......(),()( 21 ksksksks n  is a vector of the 

source components at the same time instant. 

The source signals are assumed to be statistically 

independent. 

n(k) represents the additive noise independent of 

sources.  

The N columns of matrices X and S represent the 

samples in time. 

A is a nonsingular matrix known as the mixing matrix 

having dimensions nm  
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Fig. 1 The basic block diagram of the BSS process 

The BSS problem can be stated as the estimation of n 

sources from m measurements that are unknown 

function of sources. The basic BSS model is shown in 

Fig.1. The BSS problem becomes underdetermined 

when the number of observations is less than the number 

of sources, i.e. m<n,. The problem becomes over-

determined when the number of observations is more 

than the number of sources, i.e. m>n, .The solution to 

the BSS problem depends on issues like: 

 mixture is linear or nonlinear.  

 mixture is time varying or time-invariant. 

 mixing operation is convolutive or instantaneous. 

 sensors are noisy or noiseless. 

 underdetermined or over-determined problem. 

The source separation can be formulated as the 

computation of an unmixing matrix W which transforms 

the observed signal X to Y as:  

Y=WX, Y being an estimate of X       (2) 

The basic BSS model considers as many sensors as 

sources (m=n), instantaneous mixing and noise free 

observations. Instantaneous mixing can be seen in studio 

recordings, where audio signals are mixed using a 

mixing desk without any delay or reverberations. In 

biomedical applications such as fMRI and EEG, signals 

and images are almost instantaneous mixture problems 

[5]. For instantaneous noise free mixing, we have:  

X=AS and Y=WX,  

where the task is to recover the original sources by 

finding W, which is theoretically equal to the inverse of 

the unknown mixing matrix , i.e. 
1 AW , so that Y is 

as close as possible to S. 

III. SOURCE SEPARATION AS A GENERALIZED 

EIGEN-VALUE PROBLEM 

In this case the BSS problem for instantaneous mixtures 

is formulated as a generalized eigen-value problem 

under the assumption of independent sources being non-

stationary, non-white or non-Gaussian. The solution for 

the separating matrix W is given by the generalized 

eigenvectors that simultaneously diagonalize the 

covariance matrix of the observations and an additional 

matrix which is selected on the basis of underlying 

statistical assumptions on the sources as stated above. 

The method provides a general and unified solution that 

verifies the statistical assumptions for successful source 

separation. 

 Mathematical Formulation 

The time averaged covariance matrix of the observations 

is given by: 

H

sx

H

tx AARRtxtxER  )()(    (3) 

for a general case of complex valued variables. 

H stands for Hermitian transpose.  

Rs is diagonal if sources are independent or uncorrelated. 

The method states that for non-white, non-stationary or 

non-Gaussian sources in addition to the covariance 

matrix there exists another symmetrical matrix 

representing the cross-statistics Qs, which have the same 

diagonalization property as equation(3) as given by: 

H

sx AAQQ     (4) 

To recover the sources from the observations X, the 

unmixing matrix W is to be determined such that 

IAW H    hence XWS Hˆ   Further, Qs is assumed 

to have non-zero diagonal values. 

Multiplying equation(3) and equation(4) by W and 

equation(4) with  
1

sQ  we get: 

sx ARWR      (5) 

AWQQ sx 1
       (6) 

Combining equations (5) and (6): 

 WAQQWRQRWQQWR xssxssxx   11
   (7) 

where by assumption,  ssss RQQRA 11    is a 

diagonal matrix. 

Equation (7) constitutes a generalized eigen-value 

problem, where Rx and Qx are square matrices and the 

eigen values represent the ratio of individual source 

statistics measured by the diagonals of Rs and Qs. A 

summary of different statistical assumptions used in 

BSS and how they lead to different diagonal cross 

statistics is given below in tabular (Table.1) manner. A 

detailed explanation can be found in [1]. 
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Table.1 Source characteristics ~ Diagonal Cross-Statistics 

Assumptions On 

Source 

Diagonal Cross-Statistics (Choice of Q) Comments 

1.Decorrelated 

(mixing matrix is 

orthogonal) 

Q=I The method reduces to a  

standard eigen-value 

decomposition problem 

2.Non stationary and 

decorrelated (sources 

with non-stationary 

power) 

)()()( txtxEtRQ H

xx  , 

xQQ   

Q is the covariance computed 

for a comparable period of 

stationarity time t. The signal 

is assumed to be stationary in 

a window. 

3.Non-white and 

decorrelated 
)()()(   txtxERQ H

x  
Q represents symmetric cross-

correlation for time delayed 

 0.   

4.Non-gaussian and 

independent lkjik
ssssCumQ ,,,(  

      xx

HT

xx

HH RRxxExxERTraceRxxxxE  *)(  

The method is based on ICA. 

is the sum over 4th order 

cumulants 

 

IV. SEPARATION BASED ON A GEOMETRICAL 

CONCEPT 

The main idea behind the approach is to project the 

concept of independence from a geometrical point of 

view. For a simple 2-source-sensor BSS problem, the 

sources are represented geometrically by their scatter 

plot, which is rectangular, if the sources are assumed to 

be independent. The mixing effect transforms the 

rectangle to a parallelogram, i.e., the scatter plot of the 

observed signals at the output of sensors is a 

parallelogram. The solution to the problem assumes 

same number of sources as sensors. The separation of 

sources can be achieved up to a permutation and a scale 

factor according to which, the global matrix defined by: 

G=WA should be equal to PD i.e. G=PD, where, P is a 

permutation matrix and D is a diagonal matrix [6,29-30]. 

The algorithm for separation of two sources from the 

observations of two sensors is presented here. For a 

more general case, explanation may be found in [2]. The 

algorithm separates the signals from their linear mixture 

in 2 steps, i.e., transformation and rotation. Fig.2 shows 

the block diagram of the proposed model. 

Geometrically, signals are represented by their scatter 

diagram, which is a rectangle in case of independent 

signals, turning to a parallelogram when mixed through 

an unknown mixing matrix to be available as observed 

signals for a two dimensional separation problem. In the 

first step (transformation stage) , the parallelogram 

(observed signals) is transformed into a square 

representing orthogonal signals. Mathematically, the 

orthogonal signals are obtained from the observed 

signals by Cholesky decomposition. The covariance 

matrix of the observed signals and its square root 

become full rank matrices when sources are statistically 

independent and number of sources is same as number 

of sensors. 

 

Fig. 2 Block diagram representation of BSS Model based on 

Geometrical Concepts 

 

Fig. 3 Steps of BSS based on geometrical concepts 
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Steps of Transformation 

Z= KX, K is a matrix that transforms the observed 

signals to orthogonal signals, Z is a matrix of orthogonal 

signals, X is a matrix of observed signals K=L-1. L-1 is 

obtained through a Cholesky Decomposition of the 

conariance matrix of observed signals R
X
= LLT (through 

Cholesky Decomposition), where R
X
= E[XXT] 

represents the covariance matrix of the observed signals 

R
Z
=E[ZZT]=KE[XXT]KT =L-1 R

X
 L-T=I, where R

Z
 is the 

covariance matrix of orthogonal signals. 

In the second step (rotation stage), the orthogonal 

signals (Z) are rotated through an angle   to produce 

the estimated signals (Y). 

 Mathematical steps of Rotation  








 


)cos()sin(

)sin()cos(
)(,)(




 RwhereZRY  

The steps of the algorithm are shown in Fig.3. 

''  represents the angle between the first diagonal and 

the horizontal axis and can be estimated from the 

coordinates of the farthest point from the origin. Finally 

to achieve separation, the orthogonal signals are rotated 

by an angle  , which varies with the class of the 

probability density function (PDF) of the source as 

specified in Table.2 below. 

Table.2  Rotation angle )(  ~ Nature of  Source PDF 

Rotation angle  )(  Nature of  Source PDF 

1.   4/  Sources have uniform PDF  or 

close to uniform PDF 

2.    Sources have unimodal PDF 

like symmetrical Gamma PDF 

or close to symmetrical 

Gamma PDF like Laplace or 

Cauchy 

V. SOURCE SEPARATION USING THE 

DIFFERENTIAL OF MUTUAL INFORMATION 

This is a powerful gradient based approach for 

minimization of mutual information in a parametric 

model. The model is given by: 

));(()(  txty     (8) 

Where   is a known separating system with unknown 

parameters  , x(t) represents observed signals and y(t) 

represents estimate of source signals. 

The condition of independence imposed on the output 

signals ensures separation. The degree of independence 

between the output components can be measured using 

mutual information I, which is defined as: 

  


y iyii

y

y dy
yp

yp
nlypyI

)(

)(
)()(     (9) 

where, .  rnyyyy ,......,, 21  Equation(9) also 

defines the Kullback-Leibler divergence between 

)(ypy  and )( iyii yp . )(yI  is always non-negative 

and vanishes when the components of y become 

independent of each other. Hence the solution to the 

BSS problem in (8) reduces to finding the parameter 

vector  , that minimizes  )(yI  [7,8]. The gradient of 

mutual information can be expressed in terms of score 

functions as defined below:  

Score Function:  The score function of a scalar random 

variable x is defined as the negative of the log derivative 

of its density, i.e.  

)(

)(
)()(

'

xp

xp
xpnl

dx

d
x

x

x
xx       (10) 

where xp  is the probability density function (PDF) of x. 

Marginal Score Function: The marginal score function 

(MSF) of a random vector  721 ,.....,, nxxxX   is the 

vector of score functions of its components, i.e., 

  Tnnx xxxX )(),....(),()( 2211       (11) 

where  
)(

)(
)()(

'

ixi

ixi
ixi

i

ii
xp

xp
xpnl

dx

d
x   

Joint Score Function: The joint score function (JSF) of x 

is the gradient of )"(" Xpnl x  i.e., 

 Tn xxxx )(),......(),()( 21        (12) 

where  

)(

)()/(
)()(

xp

xpx
xpnl

x
x

x

xi
x

i

i







   (13) 

Score Function Difference: The score function 

difference (SFD) of x  is the difference of its MSF and 

JSF, i.e.,  

)()()( xxx xxx     (14) 

The gradient based method can be developed from the 

knowledge of “differential” of the mutual information, 

i.e., its variation resulting from a small deviation in its 

argument [9]. 

Theorem-1: The differential of mutual information 

is stated as: 

   )()()()(  oxExIxI x

T   (15) 
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where,  )(xx is the SFD of x  and )(o  denotes 

higher order terms in   . 

Equation(15) may be stated in the following form: 

    )()()()(  oxyExIyxI x

T      (16) 

where, x and y are bounded random vectors,   is a 

matrix with small random entries and )(o  stands for a 

term that converges to zero faster than   .  

Equation(16) is simpler than equation(15) and easier to 

be used in developing gradient based algorithms for 

optimizing mutual information. Any multivariable 

differentiable function f(x) can have a form  

 )())(()()(  oxfxfxf T
 (17)  

A comparison of (15) with (17) implies that, the SFD 

can be viewed as the “stochastic gradient” of the mutual 

information. 

Property of SFD: The components of a random vector 

are independent if and only if, its SFD is zero. Hence 

considering SFD as a gradient for mutual information 

and utilizing this, it can be stated that “gradient of 

mutual information must vanish” is a necessary and 

sufficient condition for I to be minimum. 

Many methods are available for estimating JSF and SFD 

for minimizing mutual information .We have 

highlighted only the Histogram method, which estimates 

SFD directly. Though Histogram is not an accurate 

estimator of PDF, it works fine for instantaneous BSS 

problems since direct estimate of SFD does not require a 

very good estimate of PDF. 

Histogram method for estimating SFD: A histogram can 

be used for estimating the joint PDF of x . For two-

dimensional vectors, let  21,nnN  denote the number 

of observations in the bin  21,nn , then the histogram 

estimation of px is: 

 
 

T

nnN
nnp 21

21

,
,    (18) 

where,  T is the number of observations. From (18) a 

histogram estimation of is 1xp  obtained by: 

  2 2111 ,)(
n

nnpnp   (19) 

From (18) and (19) an estimation of  12 | xxp  is 

obtained as:   
   

)(

,

)(

,
|

1

21

11

21
12

nN

nnN

np

nnp
nnp   

From 14) we have, .  
 

 12

12

1
121

|

|

,
xxp

xxp
x

xx




  

A histogram estimation of  12 | xx  is given by:  

 
   

 12

1212
211

|

1||
,

nnp

nnpnnp
nn


   (20) 

 212 ,nn   is estimated in a similar manner. The value 

of  21,nn  is assigned to all the points in bin 

 21,nn . 

Gradient approach to mutual information minimization:  

In this approach, 


 )(yI
 is first calculated using 

Theorem-1. Then, the parameter vector is updated as per 

the steepest descent algorithm given by: 









)(yI
  

For linear instantaneous mixtures y=Wx,. Let  

WŴ , where    is a small matrix. 

Then the new output is: xyxWxxWy   ˆˆ

    

From Theorem-1 we obtain: 

   T

y

T

y xyExyEII )(,)(ˆ     (21) 

 where .,.  stands for scalar product of matrices. 

Equation(21) implies:    T

y xyE
W

yI
)(

)(





  (22) 

The separation algorithm is given by: 

 T

y xyEWW )(   (23) 

where,    is a small positive constant. To get a 

separation quality independent of the mixing matrix, it is 

preferable to use relative gradient instead of 
W

yI



 )(
, 

i.e., 

 T

y

T

w yyEW
W

I
I )(




   (24) 

WIIW w )(     (25) 

The algorithm may be stated using the following steps: 

 Initialization: W=I and y=x 

 Loop: 

1) Estimate )(yy  (using Histogram method) 

2)  T

yw yyEI )(  
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3) WIIW w )(    

4) y= Wx  

5)     Normalization: iii yy / , where 
2

i  is the 

energy of iy . Divide the i-th  

       row of W by  i . 

 Repeat until convergence. 

VI. KALMAN FILTERING ALGORITHM FOR BSS 

A Kalman filtering based nonlinear PCA has been used 

for blind sourse separation of pre-whitened data [10-12]. 

Assuming same number of sources as sensors, the 

nonlinear PCA algorithm with pre-whitening may be 

stated as: 

 2

()( t

T

t WvgWvEwJ    (26) 

.E  is the expectation operator,  .  stands for 

Euclidean norm, 

 tv , is the whitened vector and tt Wvy  . 

   Tnnt tytytyy ))(()),.....(()),(()( 2211    

denotes a vector of nonlinearly modified output signals. 

To develop Kalman filtering algorithm for BSS, the state 

equation and measurement equations are expressed as 

follows: 

)( 1 ttt vWz    (27) 

  )(

)(1

equationtmeasuremeneWzIv

equationstateWW

tt

T

tt

tt



  

 (28) 

where, )( tt WvecW   is a vector obtained by stacking 

the columns of  one tW  beneath the other.    stands 

for Kronecker product, I  denotes nn  identity matrix,  

te  models the measurement noise. The state equation 

has  
22 nn   identity state transition matrix. The 

optimum weight matrix at equilibrium points is time-

invariant. Equation(28) represents the standard state-

space models of Kalman filters as given in [4]. 

Let  Ct measurement  matrix = 
T

tzI   

tQ =covariance matrix of te .. The Kalman filter 

algorithm may be formulated as: 

 

 11

11

1

11















tttttt

ttttt

t

T

ttt

T

ttt

WCvGWW

KCGKK

QCKCCKG

  (29) 

  






 

T

opttopttt WWWWEK  is the state error 

correlation matrix. To reduce the heavy computational 

burden encountered in (29) a simplified approach is 

presented below: 

Proposition:  Let   iH  be nn  symmetric matrices for

1,0i   and tp  a scalar. 

The state error correlation matrix at time  t may be 

written as: tt HIK  , provided that IpQ tt   and 

the initial matrix selected is given by: 00 HIK   

Using the Proposition and applying the identity, 

t

T

ttt zWWC 11    a simplified and computationally 

efficient Kalman filtering algorithm is presented as: 

 Tt

T

ttttt

T

tttt

tt

T

ttt

ttt

zWvgWW

hgHH

phzhg

zHh

11

1

1

)/(















  (30) 

where ttt vWy 1  and )( tt yz   

VII. RESULTS 

The performance of all the above methods have been 

tested on three varieties of data and the results are 

presented in this section. For each type, the source signal 

(available in these cases), observed signal and the 

separated signal are shown. The method used to measure 

the performance of the separating algorithms tests the 

diagonal property of the system matrix, G, i.e., G = WA 

(a product of demixing and mixing matrix).  

Case1: Two synthetically generated sinusoids with 

different frequencies sampled at a sampling frequency as 

specified in the result sheet are mixed using a random 

mixing matrix. 

Case2: Acoustic electromechanical signals generated 

from induction machines running at two different speeds 

are considered. The noise of each machine is recorded at 

a sampling frequency of 22050 Hz. The samples from 

two machines collected separately are mixed using a 

random mixing matrix. 

Case3: Speech signals of two speakers (one male and 

one female) each recorded at a sampling frequency of 

22050 Hz are considered. The speech samples collected 
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from individual speakers are artificially mixed using a 

mixing matrix. 

 Separation process 

 Generalized Eigen-value Decomposition 

Method 

Case1: (sinusoids) Two sinusoids with frequencies 500 

Hz and 900 Hz are sampled at a sampling frequency of 

10 KHz.  

Number of samples considered: 10000,  

Noise (additive white Gaussian): 15dB. 

The separated signal, source signal and the mixed signal 

are shown in Fig.4-a. 

Correlation between source signal and estimated signal 

are found to be: 0.9488 & -0.9491 

Sinusoids with noise fall under the category of 

decorrelated and white source statistics having a close to 

flat spectrum. Hence the mixing matrix chosen is 

orthogonal and the diagonal cross statistics Q is chosen 

as an Identity matrix. 

Case2: (Electromechanical noise) Source data is 

stationary but falls under the category of “non-white and 

decorrelated” source statistics. Hence, the diagonal cross 

statistics Q is chosen as:. 

)()()(   txtxERQ H

x  

Number of samples considered: 48165. 

Time lag selected .)(  = 1. 

Correlation between source signals and estimated 

signals are found to be: -0.9999 & -1 

The separated signal, source signal and the mixed signal 

are shown in fig.4-b. 

Case3: (speech signal) Speech can be classified either as 

non-stationary or as non-white or as non-Gaussian 

signal. Here speech is considered as a non-stationary 

decorrelated signal and consequently diagonal cross 

statistics Q is selected as:  

x

H

xx

QQ

txtxEtRQ



 ,)()()(
 

T (stationarity time): 10,000 

Number of samples considered: 169248 

Correlation between source signals and estimated 

signals are found to be: -0.9999 & 1. 

The separated signal, source signal and the mixed signal 

are shown in fig.4-c. 

 

Fig. 4(a) BSS based on generalized eigen-value decomposition 

(sinusoids) 

 

Fig. 4(b) BSS based on generalized eigen-value decomposition 

( electromechanical noise) 

 

Fig. 4(c) BSS based on generalized eigen-value decomposition 

(speech signals) 

 Algorithm based on Geometrical Concept 

Case1: (sinusoids) Two sinusoids with frequencies 400 

Hz and 900 Hz are sampled with a sampling frequency 

10 KHz. 
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Number of samples considered: 20000. 

Noise (additive white Gaussian): 13dB. 

Since sinusoids with noise have a close to uniform PDF, 

the rotation angle   is chosen as:   )4/(  as 

specified in the literature. 

The correlation between source signals and estimated 

signals are found to be: -0.9606 & 0.9297. The separated 

signal, source signal and the mixed signal are shown in 

fig.5-a. 

Case2: (electromechanical noise) 

Number of samples considered: 24082. 

The rotation angle   )4/( . 

Correlation between source signals and estimated 

signals found to be: -0.9988 & 0.9971 

The separated signal, source signal and the mixed signal 

are shown in fig.5-b. 

Case3: (speech signals) Speech of one male and one 

female speaker are recorded at a sampling frequency of 

22050 Hz. 

Number of samples considered: 56416 

Since speech signal exhibits a PDF close to symmetrical 

gamma PDF or Laplace PDF, the rotation angle  is given 

by :   . 

Correlation between source signal and estimated signal 

are found to be: 0.9986 & 0.8711. 

The separated signal, source signal and the mixed signal 

are shown in fig.5-c. 

 

Fig. 5(a) BSS based on geometrical concepts (sinusoids) 

 

Fig. 5(b) BSS based on geometrical concepts 

(electromechanical noise) 

 

Fig. 5(c) BSS based on geometrical concepts (speech signals) 

Gradient based Mutual Information Minimization 

Case1: (Histogram method of PDF estimation): Two 

sinusoids with frequencies 400 Hz and 1 KHz are 

sampled at a sampling frequency of 5 KHz and mixed 

using a random mixing matrix. 

Number of samples considered: 1000. 

Histogram size: 10 x 10 

Number of iterations required for convergence: 50 

Correlation between source signal and estimated signal 

found are to be 0.989 & 0.99 without noise. Correlation 

between source signal and estimated signal are found to 

be 0.89 & 0.88 with 13dB noise. 

The separated signal, source signal and the mixed signal 

are shown in fig.6-a. 

Case2: (Electromechanical noise)  

Number of samples considered: 2000. 

Histogram size: 10 x 10 
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Number of iterations required for convergence: 50  

Correlation between source signal and estimated signal 

are found to be 0.9998 & 0.9982. 

The initial value of demixing matrix : Identity matrix 

The separated signal, source signal and the mixed signal 

are shown in fig.6-b. 

Case3: (speech signal)  

Number of samples considered: 169248. 

Histogram size: 50 x 50  

Number of iterations required for convergence: 50 

Correlation between source signal and estimated signal 

are found to be 0.99988 & 0.99988. The separated 

signal, source signal and the mixed signal are shown in 

fig.6-c. 

 

Fig. 6(a) BSS based on Differential of Mutual information 

(sinusoids) 

 

Fig. 6(b) BSS based on Differential of Mutual information 

(electromechanical noise) 

 

Fig. 6(c) BSS based on Differential of Mutual information 

(speech signal) 

 Kalman Filtering with Non-linear PCA 

Case1: (sinusoids) Sinusoids with frequencies 400 Hz 

and 900 Hz are sampled at a frequency 5 KHz and are 

mixed using a random mixing matrix. 

The initial value of state-error-correlation matrix: 











5.00

05.0
0K  

The initial value of demixing matrix 0W  is a randomly 

generated symmetric matrix. 

Number of samples considered: 5000. 

Correlation between source signals and estimated 

signals are found to be -0.9621 & -0.9713. The 

separated signal, source signal and the mixed signal are 

shown in fig.7-a. 

Nonlinear function used: g(t) = t - tanh(t)  

Case2: (electromechanical noise) 

The initial value of state-error-correlation matrix : 











50

05
0K  

The initial value of Demixing matrix 0W  is a randomly 

generated symmetric matrix. 

Number of samples considered: 8000. 

Correlation between source signals and estimated 

signals are found to be 0.9665 & -0.9195. The separated 

signal, source signal and the mixed signal are shown in 

fig.7-b. 



International Journal of Advance Electrical and Electronics Engineering (IJAEEE) 

________________________________________________________________________ 
 

_________________________________________________________________________ 
ISSN (Print): 2278-8948, Volume-3 Issue-1, 2014 

16 

Nonlinear function used: g(t) = tanh(t)  

Case3: (speech) 

The initial value of state-error-correlation matrix : 











50

05
0K  

The initial value of Demixing matrix 0W  is a randomly 

generated symmetric matrix. 

Number of samples considered: 56416. 

Correlation between source signals and estimated 

signals are found to be 0.9677 & -0.9726. The separated 

signal, source signal and the mixed signal are shown in 

fig.7-c. 

The nonlinear function used: g(t) = tanh(t). 

 

Fig. 7(a) BSS based on Kalman filtering applied to nonlinear 

PCA (sinusoids) 

 

Fig. 7(b) BSS based on Kalman filtering applied to nonlinear 

PCA (electromechanical noise) 

 

Fig. 7(c) BSS based on Kalman filtering applied to nonlinear 

PCA (speech signal) 

Table 3  CPU Time taken for separation 

BSS Method Signal Type CPU Time 

Generalized 

Eigen Value 

Decomposition 

Sinusoids with  

noise(15 dB) Fig.4-a 

0.032 sec 

Induction machine 

data Fig.4-b 

0.031 sec. 

Speech data Fig.4-c 0.031 sec. 

Algorithm based 

on geometrical 

concepts 

Sinusoids with  

noise(13 dB) Fig.5-a 

5.579 sec. 

Induction machine 

data Fig.5-b 

0.98 sec. 

Speech data Fig.5-c 57 sec. 

Gradient based 

mutual 

information 

minimization 

Sinusoid with 

noise(13 dB) Fig.6-a 

7.5 sec. 

Induction machine 

data Fig.6-b 

20.797 sec 

Speech data Fig.6-c 90.89 sec 

Kalman 

Filtering with 

Nonlinear PCA 

Sinusoids without 

noise Fig.7-a 

6 sec. 

Induction machine 

data Fig.7-b 

4.2 sec 

Speech data Fig.7-c 20.96 sec 
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VIII. CONCLUSION 

This paper presented a review of some of the recently 

published BSS methods applied to speech, acoustic 

electromechanical noise and synthetic signals. All the 

separation algorithms performed well in all cases.  

In Eigen value decomposition method, since the order 

and scale of these eigen vectors are arbitrary, recovered 

sources also get arbitrarily scaled and permuted. These 

ambiguities can be resolved by scaling the eigen vectors 

to unit norm and sorting them by the magnitude of their 

generalized eigen values. The method can be used for 

over determined BSS but doesn‟t address the under 

determined case. The method is also not robust to 

estimation error. 

Experimental results from BSS based on geometrical 

concept demonstrate superior separation ability for 

stationary and non-stationary data. The algorithm is 

robust and performs well even under 10dB noise. For 

stationary and less number of source-sensor 

combination, the algorithm requires less number of 

samples for convergence. Convergence time of the 

algorithm is very competitive. One drawback of the 

algorithm is its inability to separate a mixture of sources 

having uniform and unimodal PDF. For more than three 

source-sensor combination the algorithm becomes 

computationally complex.  

Gradient based mutual information minimization 

technique demonstrates superior separation ability, 

competitive convergence speed. One limitation of the 

method is the requirement of multivariate PDF 

estimation that requires large number of data when the 

number of variables is large. Therefore the maximum 

number of sources that can be estimated is limited to 3 

or 4. 

Kalman filtering algorithm shows its proficiency in 

separation ability and convergence time. Since the 

estimation progresses sample wise it has the best 

tracking ability. The algorithm is suitable for real time 

data and on-line processing. 
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