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Abstract—This paper proposes a comparator design using 

conventional digital CMOS cells featuring wide-range and 

high-speed operation. The Comparison is most basic 

arithmetic operation that determines whether one number 

is greater than, less than or equal to the other number. Our 

comparator uses a novel scalable parallel prefix structure 

that leverages the comparison outcome of the MSB, 

proceeding bitwise towards LSB only when the comparison 

bits are equal. This comparator is composed of locally 

interconnected CMOS gates with a maximum fan-in of five 

and fan-out of four, independent of comparator 

bandwidth. 

 Comparator is most fundamental component that 

performs comparison operation. Comparison between 

modified and existing 8-bit binary comparator designs is 

calculated by simulation performed at 90nm technology in 

DSCH, Microwind Tool The main advantages of our 

proposed design are high speed and power efficiency, 

maintained over a wide range.  

Index Terms—High-speed arithmetic, high-speed wide-bit 

comparator architecture, parallel prefix tree structure. 

I. INTRODUCTION 

Comparator is a basic arithmetic unit that compares the 

magnitude of two binary numbers, say A and B, and 

produces output bits: A>B or A<B or A=B. It is an 

important data-path element for any general purpose 

architecture as well as an essential device for 

application-specific and signal processing architectures. 

Comparators are also used in sorting networks which 

play an important role in areas such as parallel 

computing, multi-access memories and multiprocessing. 

Comparator forms a fundamental component of 

processors and digital systems. For processors, in order 

to achieve high throughput with fast clock rates, it is 

necessary that such devices have less delay. 

Consequently, the designing of high speed comparator 

architecture becomes a relevant and essential research 

topic. Previously published comparator implementations 

having serial and parallel architecture can both be found 

in literature. The serial architecture is suitable for short 

inputs (i.e. when both the inputs have lesser number of 

bits). For longer inputs (say, 32 bit, 64 bit inputs), the 

circuit complexity and the combinational delay increase 

drastically. As a result, parallel approach is generally 

preferred for comparators with longer inputs. The 

comparator designs presented in this paper are based on 

parallel approach. 

II. COMPARATOR ARCHITECTURAL 

OVERVIEW 

The comparison resolution module in Fig. 1 (which 

depicts the high-level architecture of our proposed 

design) is a novel MSB-to-LSB parallel-prefix tree 

structure that performs bitwise comparison of two N-bit 

operands A and B, denoted as AN−1, AN−2, . . ., A0 

and BN−1, BN−2, . . ., B0, where the subscripts range 

from N–1 for the MSB to 0 for the LSB. The 

comparison resolution module performs the bitwise 

comparison asynchronously from left to right, such that 

the comparison logic’s computation is triggered only if 

all bits of greater significance are equal. The parallel 

structure encodes the bitwise comparison results into 

two N-bit buses, the left bus and the right bus, each of 

which store the partial comparison result as each bit 

position is evaluated, such that 

if Ak > Bk, then left k = 1 and right k = 0 

if Ak < Bk , then left k = 0 and right k = 1 

if Ak = Bk , then left k = 0 and right k = 0. 

 

Fig. 2. Example 8-b comparison 

In addition, to reduce switching activities, as soon as a 

bitwise comparison is not equal, the bitwise comparison 

of every bit of lower significance is terminated and all 

such positions are set to zero on both buses, thus, there 

is never more than one high bit on either bus. The 

decision module uses two OR-networks to output the 
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final comparison decision based on separate OR-scans 

of all of the bits on the left bus (producing the L bit) and 

all of the bits on the right bus (producing the R bit). If 

LR = 00, then A = B, if LR = 10 then A > B, if LR = 01 

then A < B, and LR = 11 is not possible. 

An 8-bit comparison of input operands A = 01011101 

and B = 01101001 is illustrated in Fig. 2. In the first 

step, a parallel prefix tree structure generates the 

encoded data on the left bus and right bus for each pair 

of corresponding bits from A and B. In this example, A7 

= 0 and B7 = 0 encodes as left7 = right7 = 0, A6 = 1, 

and B6 = 1 encodes as left6 =right6 = 0, and A5 = 0 and 

B5 = 1 encodes left5 = 0 and right5 = 1. At this point, 

since the bits are unequal, the comparison terminates 

and a final comparison decision can be made based on 

the first three bits evaluated. The parallel prefix structure 

forces all bits of lesser significance on each bus to 0, 

regardless of the remaining bit values in the operands. In 

the second step, the OR-networks perform the bus OR-

scans, resulting in 0 and 1, respectively, and the final 

comparison decision is A > B. 

We partition the structure into five hierarchical prefixing 

sets, as depicted in Fig. 3, with the associated symbol 

representations in Tables I and II, where each set 

performs a specific function whose output serves as 

input to the next set, until the fifth set produces the 

output on the left bus and the right bus. 

TABLE I - SYMBOL NOTATION AND 

DEFINITIONS 

 
TABLE II - LOGIC GATE REPRESENTATIONS FOR 

SYMBOLS USED IN FIG. 3 

 

All cells (components) within each set operate in 

parallel, which is a key feature to increase operating 

speed while minimizing the transitions to a minimal set 

of leftmost bits needed for a correct decision. This 

prefixing set structure bounds the components’ fan-in 

and fan-out regardless of comparator bitwidth and 

eliminates heavily loaded global signals with parasitic 

components, thus improving the operating speed and 

reducing power consumption. Additionally, the OR-

network’s fan-in and fan-out is limited by partitioning 

the buses into 4-b groupings of the input operands, thus 

reducing the capacitive load of each bus. 

III. COMPARATOR DESIGN DETAILS. 

In this section, we detail our comparator’s design (Fig. 

3), which is based on using a novel parallel prefix tree 

(Tables I and II contain symbols and definitions). Each 

set or group of cells produces outputs that serve as 

inputs to the next set in the hierarchy, with the exception 

of set 1, whose outputs serve as inputs to several sets 

 

Fig. 3. Implementation details for the comparison 

resolution module (sets 1 through 5) and the decision 

module. 

Set 1 compares the N-bit operands A and B bit-by-bit, 

using a single level of N -type cells. The N-type cells 

provide a termination flag Dk to cells in sets 2 and 4, 

indicating whether the computation should terminate.  

Set 2 consists of ∑2-type cells, which combine the 

termination flags for each of the four Ψ-type cells from 

set 1 (each ∑2-type cell combines the  termination flags 

of one 4-b partition) using NOR-logic to limit the fan-in 

and fan-out to a maximum of four. The ∑2-type cells 

either continue the comparison for bits of lesser 

significance if all four inputs are 0s, or terminate the 

comparison if a final decision can be made.  

Set 3 consists of ∑3-type cells, which are similar to 

∑2-type cells, but can have more logic levels, different 

inputs, and carry different triggering points. A∑3-type 

cell provides no comparison functionality; the cell’s sole 

purpose is to limit the fan-in and fan-out regardless of 

operand bit width. To limit the ∑3-type cell’s local 

interconnect to four, the number of levels in set 3 

increases if the fan-in exceeds four. Set 3 provides 

functionality similar to set 2 using the same NOR logic 

to continue or terminate the bitwise comparison activity. 

If the comparison is terminated, set 3 signals set 4 to set 

the left bus and right bus bits to 0 for all bits of lower 

significance.  
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Set 4 consists of Ω-type cells, whose outputs control the 

select inputs of Ω -type cells (two-input multiplexors) in 

set 5, which in turn drive both the left bus and the right 

bus. For an Ω-type cell and the 4-b partition to which the 

cell belongs, bitwise comparison outcomes from set 1 

provide information about the more significant bits in 

the cell’s Ω type cells. 

The number of inputs in the Ω-type cells increases from 

left to right in each partition, ending with a fan-in of 

five. Thus, the Ω type cells in set  4 determine whether 

set 5 propagates the bitwise comparison codes. Table III 

shows a sample 16-b comparison to clarify (5) using 

(1)–(4). Set 5 consists of N Ω -type cells (two-input, 2-

b-wide multiplexers). One input is (Ak, Bk) and the 

other is hardwired to “00.” The select control input is 

based on the Ω-type cell output   set 4. We define the 2-

b as the left-bit code (Ak) and the right-bit code (Bk), 

where all left-bit codes and all  right-bit codes combine 

to form the left bus and the right bus,  respectively. The 

output F1,0 k denotes the “greater-than,” “less-than,” or 

“equal to” final comparison decision Essentially, the 2-b 

code F1,0 k can be realized by OR-ing all left bits and 

all right bits separately as shown in fig2. 

IV. PROPOSED 8 BIT COMPARATOR: 

In this section, The Proposed comparator design is same 

as the decision module. The modify the comparison 

resolution module as shown in fig.4 

 

Fig. 4 Design of Proposed 8 Bit Comparator using 

V. SIMULATION RESULTS 

 
Fig. 5.1 Design of 8 Bit Comparator Using a Parallel 

Prefix Tree  using in DSCH Tool. 

 
Fig. 5.2 Design of Proposed 8 Bit Comparator using 

DSCH Tool 

 
Fig. 5.3 Design of 8 Bit Comparator Using a Parallel 

Prefix Tree layout using in Microwind Tool in 90nm. 

 

Fig. 5.4 Design of Proposed 8 Bit Comparator Using a 

layout using in Microwind Tool in 90nm. 

TABLE III- COMPARATOR WITH 8 BITS AT 

DIFFERENT TECHNOLOGY 

 Scalable 8 bit Comparator Proposed 8 bit Comparator 

Technology 0.18μm 

1.95 V 

0.120μm  

1.95 V 

90μm  

1.95 V 

0.18μm  

1.95 V 

0.120μm  

1.95 V 

90μm  

1.95V 

Area 38211 8796.5 6108.7 12322 2838.8 1971.4 

Power 1.342 

mW 

0.193 

mW 

93.67 

μW 

0.217 

mW 

20.633 

μW 

16.716 

μW 

V. CONCLUSION 

In this paper, we presented a scalable high-speed low-

power comparator using regular digital hardware 

structures consisting ABDEL-HAFEEZ et al.: 
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SCALABLE DIGITAL of two modules: the comparison 

resolution module and the decision module. These 

modules are structured as parallel prefix trees with 

repeated cells in the form of simple stages that are one 

gate level deep with a maximum fan-in of five and fan-

out of four, independent of the input bit width. This 

regularity allows simple prediction of comparator 

characteristics for arbitrary bit widths and is attractive 

for continued technology scaling and logic synthesis. 
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