
International Journal of Advance Electrical and Electronics Engineering (IJAEEE)

ISSN (Print): 2278-8948, Volume-3 Issue-1, 2014

66

Design of Parallel Prefix Tree Structure for CMOS Comparator

1
A. Ramesh,

2
A.Srinivas Gupta,

3
B. Rajasekhara Reddy

1
Student of VLSI Design,

2
Assistant Professor,

 3
Assistant Professor

E.C.E Department, Narasaraopeta Institute of Technology, Narasaraopeta,

Email:
1
aluriramesh4@gmail.com,

2
anpsgupta@gmail.com,

3
rajasekhar.reddy61@gmail.com

Abstract—This paper proposes a comparator design using

conventional digital CMOS cells featuring wide-range and

high-speed operation. The Comparison is most basic

arithmetic operation that determines whether one number

is greater than, less than or equal to the other number. Our

comparator uses a novel scalable parallel prefix structure

that leverages the comparison outcome of the MSB,

proceeding bitwise towards LSB only when the comparison

bits are equal. This comparator is composed of locally

interconnected CMOS gates with a maximum fan-in of five

and fan-out of four, independent of comparator

bandwidth.

 Comparator is most fundamental component that

performs comparison operation. Comparison between

modified and existing 8-bit binary comparator designs is

calculated by simulation performed at 90nm technology in

DSCH, Microwind Tool The main advantages of our

proposed design are high speed and power efficiency,

maintained over a wide range.

Index Terms—High-speed arithmetic, high-speed wide-bit

comparator architecture, parallel prefix tree structure.

I. INTRODUCTION

Comparator is a basic arithmetic unit that compares the

magnitude of two binary numbers, say A and B, and

produces output bits: A>B or A<B or A=B. It is an

important data-path element for any general purpose

architecture as well as an essential device for

application-specific and signal processing architectures.

Comparators are also used in sorting networks which

play an important role in areas such as parallel

computing, multi-access memories and multiprocessing.

Comparator forms a fundamental component of

processors and digital systems. For processors, in order

to achieve high throughput with fast clock rates, it is

necessary that such devices have less delay.

Consequently, the designing of high speed comparator

architecture becomes a relevant and essential research

topic. Previously published comparator implementations

having serial and parallel architecture can both be found

in literature. The serial architecture is suitable for short

inputs (i.e. when both the inputs have lesser number of

bits). For longer inputs (say, 32 bit, 64 bit inputs), the

circuit complexity and the combinational delay increase

drastically. As a result, parallel approach is generally

preferred for comparators with longer inputs. The

comparator designs presented in this paper are based on

parallel approach.

II. COMPARATOR ARCHITECTURAL

OVERVIEW

The comparison resolution module in Fig. 1 (which

depicts the high-level architecture of our proposed

design) is a novel MSB-to-LSB parallel-prefix tree

structure that performs bitwise comparison of two N-bit

operands A and B, denoted as AN−1, AN−2, . . ., A0

and BN−1, BN−2, . . ., B0, where the subscripts range

from N–1 for the MSB to 0 for the LSB. The

comparison resolution module performs the bitwise

comparison asynchronously from left to right, such that

the comparison logic’s computation is triggered only if

all bits of greater significance are equal. The parallel

structure encodes the bitwise comparison results into

two N-bit buses, the left bus and the right bus, each of

which store the partial comparison result as each bit

position is evaluated, such that

if Ak > Bk, then left k = 1 and right k = 0

if Ak < Bk , then left k = 0 and right k = 1

if Ak = Bk , then left k = 0 and right k = 0.

Fig. 2. Example 8-b comparison

In addition, to reduce switching activities, as soon as a

bitwise comparison is not equal, the bitwise comparison

of every bit of lower significance is terminated and all

such positions are set to zero on both buses, thus, there

is never more than one high bit on either bus. The

decision module uses two OR-networks to output the

mailto:aluriramesh4@gmail.com
mailto:anpsgupta@gmail.com
mailto:rajasekhar.reddy61@gmail.com

International Journal of Advance Electrical and Electronics Engineering (IJAEEE)

ISSN (Print): 2278-8948, Volume-3 Issue-1, 2014

67

final comparison decision based on separate OR-scans

of all of the bits on the left bus (producing the L bit) and

all of the bits on the right bus (producing the R bit). If

LR = 00, then A = B, if LR = 10 then A > B, if LR = 01

then A < B, and LR = 11 is not possible.

An 8-bit comparison of input operands A = 01011101

and B = 01101001 is illustrated in Fig. 2. In the first

step, a parallel prefix tree structure generates the

encoded data on the left bus and right bus for each pair

of corresponding bits from A and B. In this example, A7

= 0 and B7 = 0 encodes as left7 = right7 = 0, A6 = 1,

and B6 = 1 encodes as left6 =right6 = 0, and A5 = 0 and

B5 = 1 encodes left5 = 0 and right5 = 1. At this point,

since the bits are unequal, the comparison terminates

and a final comparison decision can be made based on

the first three bits evaluated. The parallel prefix structure

forces all bits of lesser significance on each bus to 0,

regardless of the remaining bit values in the operands. In

the second step, the OR-networks perform the bus OR-

scans, resulting in 0 and 1, respectively, and the final

comparison decision is A > B.

We partition the structure into five hierarchical prefixing

sets, as depicted in Fig. 3, with the associated symbol

representations in Tables I and II, where each set

performs a specific function whose output serves as

input to the next set, until the fifth set produces the

output on the left bus and the right bus.

TABLE I - SYMBOL NOTATION AND

DEFINITIONS

TABLE II - LOGIC GATE REPRESENTATIONS FOR

SYMBOLS USED IN FIG. 3

All cells (components) within each set operate in

parallel, which is a key feature to increase operating

speed while minimizing the transitions to a minimal set

of leftmost bits needed for a correct decision. This

prefixing set structure bounds the components’ fan-in

and fan-out regardless of comparator bitwidth and

eliminates heavily loaded global signals with parasitic

components, thus improving the operating speed and

reducing power consumption. Additionally, the OR-

network’s fan-in and fan-out is limited by partitioning

the buses into 4-b groupings of the input operands, thus

reducing the capacitive load of each bus.

III. COMPARATOR DESIGN DETAILS.

In this section, we detail our comparator’s design (Fig.

3), which is based on using a novel parallel prefix tree

(Tables I and II contain symbols and definitions). Each

set or group of cells produces outputs that serve as

inputs to the next set in the hierarchy, with the exception

of set 1, whose outputs serve as inputs to several sets

Fig. 3. Implementation details for the comparison

resolution module (sets 1 through 5) and the decision

module.

Set 1 compares the N-bit operands A and B bit-by-bit,

using a single level of N -type cells. The N-type cells

provide a termination flag Dk to cells in sets 2 and 4,

indicating whether the computation should terminate.

Set 2 consists of ∑2-type cells, which combine the

termination flags for each of the four Ψ-type cells from

set 1 (each ∑2-type cell combines the termination flags

of one 4-b partition) using NOR-logic to limit the fan-in

and fan-out to a maximum of four. The ∑2-type cells

either continue the comparison for bits of lesser

significance if all four inputs are 0s, or terminate the

comparison if a final decision can be made.

Set 3 consists of ∑3-type cells, which are similar to

∑2-type cells, but can have more logic levels, different

inputs, and carry different triggering points. A∑3-type

cell provides no comparison functionality; the cell’s sole

purpose is to limit the fan-in and fan-out regardless of

operand bit width. To limit the ∑3-type cell’s local

interconnect to four, the number of levels in set 3

increases if the fan-in exceeds four. Set 3 provides

functionality similar to set 2 using the same NOR logic

to continue or terminate the bitwise comparison activity.

If the comparison is terminated, set 3 signals set 4 to set

the left bus and right bus bits to 0 for all bits of lower

significance.

International Journal of Advance Electrical and Electronics Engineering (IJAEEE)

ISSN (Print): 2278-8948, Volume-3 Issue-1, 2014

68

Set 4 consists of Ω-type cells, whose outputs control the

select inputs of Ω -type cells (two-input multiplexors) in

set 5, which in turn drive both the left bus and the right

bus. For an Ω-type cell and the 4-b partition to which the

cell belongs, bitwise comparison outcomes from set 1

provide information about the more significant bits in

the cell’s Ω type cells.

The number of inputs in the Ω-type cells increases from

left to right in each partition, ending with a fan-in of

five. Thus, the Ω type cells in set 4 determine whether

set 5 propagates the bitwise comparison codes. Table III

shows a sample 16-b comparison to clarify (5) using

(1)–(4). Set 5 consists of N Ω -type cells (two-input, 2-

b-wide multiplexers). One input is (Ak, Bk) and the

other is hardwired to “00.” The select control input is

based on the Ω-type cell output set 4. We define the 2-

b as the left-bit code (Ak) and the right-bit code (Bk),

where all left-bit codes and all right-bit codes combine

to form the left bus and the right bus, respectively. The

output F1,0 k denotes the “greater-than,” “less-than,” or

“equal to” final comparison decision Essentially, the 2-b

code F1,0 k can be realized by OR-ing all left bits and

all right bits separately as shown in fig2.

IV. PROPOSED 8 BIT COMPARATOR:

In this section, The Proposed comparator design is same

as the decision module. The modify the comparison

resolution module as shown in fig.4

Fig. 4 Design of Proposed 8 Bit Comparator using

V. SIMULATION RESULTS

Fig. 5.1 Design of 8 Bit Comparator Using a Parallel

Prefix Tree using in DSCH Tool.

Fig. 5.2 Design of Proposed 8 Bit Comparator using

DSCH Tool

Fig. 5.3 Design of 8 Bit Comparator Using a Parallel

Prefix Tree layout using in Microwind Tool in 90nm.

Fig. 5.4 Design of Proposed 8 Bit Comparator Using a

layout using in Microwind Tool in 90nm.

TABLE III- COMPARATOR WITH 8 BITS AT

DIFFERENT TECHNOLOGY

 Scalable 8 bit Comparator Proposed 8 bit Comparator

Technology 0.18μm

1.95 V

0.120μm

1.95 V

90μm

1.95 V

0.18μm

1.95 V

0.120μm

1.95 V

90μm

1.95V

Area 38211 8796.5 6108.7 12322 2838.8 1971.4

Power 1.342

mW

0.193

mW

93.67

μW

0.217

mW

20.633

μW

16.716

μW

V. CONCLUSION

In this paper, we presented a scalable high-speed low-

power comparator using regular digital hardware

structures consisting ABDEL-HAFEEZ et al.:

International Journal of Advance Electrical and Electronics Engineering (IJAEEE)

ISSN (Print): 2278-8948, Volume-3 Issue-1, 2014

69

SCALABLE DIGITAL of two modules: the comparison

resolution module and the decision module. These

modules are structured as parallel prefix trees with

repeated cells in the form of simple stages that are one

gate level deep with a maximum fan-in of five and fan-

out of four, independent of the input bit width. This

regularity allows simple prediction of comparator

characteristics for arbitrary bit widths and is attractive

for continued technology scaling and logic synthesis.

VI. REFERENCES

[1] H. J. R. Liu and H. Yao, High-Performance VLSI

Signal Processing Innovative Architectures and

Algorithms, vol. 2. Piscataway, NJ: IEEE Press,

1998.

[2] Y. Sheng and W. Wang, “Design and

implementation of compression algorithm

comparator for digital image processing on

component,” in Proc. 9th Int. Conf. Young

Comput. Sci., Nov. 2008, pp. 1337–1341.

[3] H. Suzuki, C. H. Kim, and K. Roy, “Fast tag

comparator using diode partitioned domino for

64-bit microprocessor,” IEEE Trans. Circuits

Syst. I, vol. 54, no. 2, pp. 322–328, Feb. 2007.

[4] A. H. Chan and G. W. Roberts, “A jitter

characterization system using a component-

invariant Vernier delay line,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 12, no. 1,

pp. 79–95, Jan. 2004.



