Decomposition based Color Image Restoration

¹Saurabh A. Shah, ²Nileshsingh V. Thakur

^{1,2} Department of Computer Science and Engineering, ^{1,2} Prof Ram Meghe College of Engineering and Management, Badnera, India ¹ shahsaurabh.15@gmail.com, ² thakurnisvis@rediffmail.com

Abstract— Image decomposition is widely used technique to process the given grey or color image. Need of image restoration, in general, arises when the image is noisy or blurred. This paper addresses the issue of formulation of problem associated with the image restoration based on image decomposition. Along with this, the possible proposed approach is discussed. This paper is useful for the beginners in the image decomposition and image restoration.

Index Terms—Image Decomposition, Image Restoration, Noisy Image, Image Filtering.

I. INTRODUCTION

Image restoration is required to restore the transmitted image or to recover the clear image from the distorted image. Image decomposition is the technique where the image is divided into different part or component to have the content of the image in different formats. While doing the decomposition, the properties of the image are preserved. This paper presents the formulation and the proposed approach for the image. Firstly, the problem is formulated, and along with this the proposed approach is presented where one can explore different techniques to devise the proper mechanism for the image decomposition and restoration.

This paper is organized as follows. Section II discusses the related work; problem formulation and possible proposed approach is discussed in section III. Conclusion is given in section IV followed by the references.

II. RELATED WORK

Image decomposition is, basically, the representation of the given grey or color image in different parts or components so that later, the original image can be recovered. Existing approaches in [1]-[8] are studied and the methodologies used are- Learning based decomposition and then denoising [1], learning based artifact removal [2], intrinsic decomposition [3]-[6], texture and cartoon decomposition [7] and weighted least squares-based approach [8]. Summary of the studied approaches in [1]-[8] is summarized in Table 1.

Ref	Work Carried Out	Methodology	PEP	Dataset	Claim by author(s)	Our Findings
[1]	Self-learning-based	Used sparse	PSNR	Rain images	Identified undesired	Unsupervised
	image decomposition	representation			noise patterns	clustering algorithm
[2]	Learning based	Bilateral filter,	Computational	Thorax & Pelvis	High image quality and	Enhanced the
	artefacts removal	dictionary learning,	cost	Phantom	low computational	performance with
		sparse coding			complexity	less complexity
[3]	Image-space for	Per-pixel statistic &	RMSE,	MIT intrinsic	Computation of	No frame-by-frame
	estimating AO in image	photometric approach	average error,	image dataset	reflectance and	ordering or
	set	used	LMSE		illumination without	coherence.
					smoothness	
[4]	IID for classification of	Feature extraction	Computational	Indian Pines, the	Higher classification	No implementation
	hyper spectral images		time	University of	accuracy with small	of other hyper
				Pavia, and	training samples	spectral
				Salinas images		applications
[5]	SSID for hyperspectral	SLIC & FH	Computational	Pavia dataset	Minimizes storage &	Failed to take
	images		time		computation	advantage of sparse
					requirements by using	constraints matrix
					superpixels	
[6]	Image fusion based on	Reflectance	Computational	Quickbird and	Seamlessly fused	Computational cost
	IID	prediction and	time	Worldview-2	images without spectral	is higher
		reflectance + PAN			distortion	
		image				

Table 1: Image Decomposition Techniques Summary

[7]	Texture	Used BNN for	PSNR, SSIM	Berkeley	Handles blur + missing	Use of block wise
	characterization-based	suitable		segmentation	pixels images with	nature of BNN is
	image decomposition	characterization		Database	different noise	challenging
[8]	Edge preserving image	Weighted Least	Application	Heart shaped	Feasible optimization	Method used in
	decomposition	Square (WLS)	Specific	cookies, Barbara,	framework	HDR tone mapping
			Metric	Girl, small		
				office,		

Image restoration means to restore the original grey or color image from the distorted or noisy grey or color image. In general, different techniques are used to restore the original image, namely, denoising, deblurring, etc. Existing approaches in [9]-[21] are studied and the methodologies used are- Echo state network and optimization [9], wavelet [10], Gaussian mixture model [11], group sparsity [12], neural network [13], patch based [14], scale map [15], auto encoder [16], gradient sparsity [17], adaptive norm selection [18], p-norm [19], group sparse [20], and tensor recovery [21]. Summary of the studied approaches in [9]-[21] is summarized in Table 2.

Table 2: Image Restoration	Literature Summary
----------------------------	--------------------

Ref	Work Carried Out	Methodology	PEP	Dataset	Claim by author(s)	Our Findings
[9]	Differentiable error	Denoising-Based	SSIM, SSIM,	MIT-Adobe	Method can be acceptable	Choosing the
	function based on the	approach	MSSIM	FiveK Dataset	by visual inspection	right loss function
	performance of losses					is crucial
[10]	GSR using patches as	Self adaptive	PSNR, FSIM	Barbara, Boats,	Leverages both nonlocal	No solution for
	base	dictionary learning		House, C. Man,	self-similarity and	image deblurring
				Peppers, Lena	intrinsic local sparsity	in presence of
-						impulse
[11]	Iterative denosing based	Off the shell	PSNR	Cameraman,	Utilizes fewer denoising	No high-quality
	image restoration	denoiser		House, Lena,	NN for solving inverse	results and
				Peppers, Barbara,	problems	computational
				Boat, Hill,		efficiency
				Couple,		
F101		0 110	DOND CODA	BSD68	Estimation of each	Handles
[12]	Non-local extension of	Sparsity model of	PSNR, SSIM	Lena, Peppers,		
	total variation (TV)	gradient image		Airplane, Barbara, Fishing	gradient and adaptive learning of statistical	non-stationery nature on images
	regularization			boat, Sailboats	models	nature on images
[13]	Non-local variational	SS-based nonlocal	PSNR, SSIM	USC-SIPI image	Enhances the	Addresses the
[13]	technique based on SS	quadratic and total	1 5141, 551141	database	effectiveness of image	limitations of
	for image restoration	variation functions		database	restoration with texture	intensity-based
	for mage restoration	(SS-NLH1 and			and structural information	patch distance
		SS-NLTV) are used			und Stractural Information	puten distance
[14]	Determining the optimal	Adopts Piecewise	PSNR,	Cameraman,	Finds stable norm values	Failed to seek an
	norms for both fidelity	function and	Running	Barbera, Piret,	regardless of noise type	adaptive
	and regularization terms	regularize norms	Time	Peppers, Leaf,	C 11	technique for
	-			Buildong, Aerial,		determining an
				Urban		alternative in
						regularization
[15]	Gradient distribution	Spatially variant	PSNR, SSIM	House, Peppers,	Achieving better quality	No need of
	based image restoration	hyper-Laplacian		Lena,	and texture preservation	complex
		distribution is used		Boat	_	parameter tuning
[16]	Autoencoder based	Auxiliary	PSNR, SSIM	Classic5 and	Incorporates	For multi-filters
	restoration for grayscale	variable technique		LIVE1 dataset	higher-dimensional	either low rank
	images				structural information and	regulation or
					enhances network	sparse
					stability.	representation is required
[17]	Frameworks using	Multispectral	PSNR	NIR & noisy	Effectively handles	Addresses the
[1/]	different inputs like NIR	shadow detection is	FONK	color images	structural divergence and	issues of
	image and noisy color	used		color images	achieves visually plausible	
	image and horsy color	useu			image reconstruction.	image restoration
[18]	RNN based ESN for	Neurodynamic	PSNR, MSE,	Judd and Torallba	Enhances the capabilities	Finding the
[10]	restoring image	Optimization	NRMSE	dataset	of ESNs for effectively	optimal
	BB.	approach based on			recovering high-quality	parameter is still a
		RNN			images from degraded or	big challenge
					noisy versions.	6
[19]	Restoring images by	An edge-driven	PSNR,	Slope, Angry	Handles the estimation of	Unsuitable for
	representing them as	wavelet frame model	Datagram	Birds, Peppers,	image singularities and	images with

	piecewise smooth	is used	Loss Rate	Sonic,	offers improved	texture
	functions			Train, Airplane,	regularization	
				Oil Painting, and		
				Pitt		
[20]	Wavelet frame-based	Treating the images	SSIM	Car,	Restores images by	Hindering the
	image restoration	as a piecewise		Goldengate,	preserving singularities	guarantee of both
		smooth function		Interior, Pitt,		edges and
				Samantha		sharpness.
[21]	Minimize the	Blind deconvolution	Computation	Debris Images	Minimizes expensive	Struggle to store
	consequence of blur	method	Cost		computations and	fine textures
					improvement in debris	
					analysis	

III. FORMULATION OF PROBLEM AND PROPOSED APPROACH

In general, it is found that the filtering banks can be used to decompose the images. In view of the development of the proposed filtering-based color image decomposition approach to address the issue of color image restoration, the baseline problem is formulated as follows:

Consider the color image I is firstly separated as the grey images (R-plane, G-plane and B-plane grey level images). That is,

 $R = \{Intensity values from 0-255\},\$

 $G = \{Intensity values from 0-255\},\$

 $B = \{Intensity values from 0-255\},\$

 $I = \{R, G, B\}$

Later, each grey level plane is degraded with some noise η to get the degraded grey level plane images.

 R_D - Degraded R-plane with the insertion of noise η .

 G_D - Degraded G-plane with the insertion of noise η .

 B_D - Degraded B-plane with the insertion of noise η .

Then these each degraded grey level planes (R_D , G_D , and B_D) are decomposed into three components in view of the color image restoration.

 R_D - Decomposed into R_D - C_1 , R_D - C_2 , and R_D - C_3 .

 G_D - Decomposed into G_D - C_1 , G_D - C_2 , and G_D - C_3 .

 B_D - Decomposed into B_D - C_1 , B_D - C_2 , and B_D - C_3 .

These three decomposed components (C_1, C_2, C_3) for each grey level plane can be obtained by using the combination of different filters or by using the typical filters

 $F(\cdot)$ (*i.e.*, average filter, median filter, max filter, min filter, etc.). It is a matter of investigation to identify the particular filter which should be used only once or the filter banks or the combination of filters as shown in

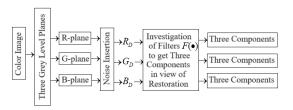


Figure 1: Filtering based Image Decomposition

Then these each degraded grey level planes (R_D , G_D , and B_D) are decomposed into three components in view of the color image restoration.

Being the proposed image restoration approach is based on the image decomposition and that is related to the filtering-based image decomposition, so, due consideration should be given to the noise percentage in the generated/decomposed three components of the degraded grey level plane images. And, later the development of the denoising/restoration mechanism to reconstruct the original color image by reconstructing grey level plane images. Reconstructed color image I can be restored through the flow given in Figure 2.

By referring the presented problem formulation of image restoration based on image decomposition, one can investigate different filters from the image decomposition point of view. Various types of approaches can be developed based on filtering. It can be work out by using homogeneous or heterogeneous filters (e.g. simple average or median filters or the combination of average and median filters). If the original image is not distorted then the original image is degraded with the insertion of noise. And, then it is decomposed into three components. As these three components involves the noise, so it is necessary to evaluate the percentage of noise in these three components. Noise percentage evaluation may involve the use of variance and standard deviation. Finally, once done with the noise percentage evaluation, one can design the denoising mechanism to remove the noise in components to recover the noise free components which in turn produces the corresponding grey image or grey level plane of the color image. Reconstructed color planes can be combined to get the reconstructed color image.

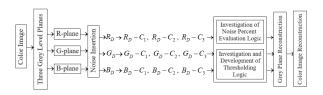


Figure 2: Decomposition based Image Restoration

IV. CONCLUSION

This paper discussed about the possible image decomposition and image restoration mechanisms or approaches. Different type of image decomposition approaches is possible and hence different type of image restoration approaches are possible. This paper is useful for the beginners in the domain of the image decomposition and image restoration.

REFERENCES

- D. -A. Huang, L. -W. Kang, Y. -C. F. Wang and C. -W. Lin, "Self-Learning Based Image Decomposition with Applications to Single Image Denoising," in IEEE Transactions on Multimedia, vol. 16, no. 1, pp. 83-93, Jan. 2014. https://doi.org/10.1109/TMM.2013.2284759.
- [2] X.-Y. Cui, Z.-G. Gui, Q. Zhang, H. Shangguan and A. -H. Wang, "Learning-Based Artifact Removal via Image Decomposition for Low-Dose CT Image Processing," in IEEE Transactions on Nuclear Science, vol. 63, no. 3, pp. 1860-1873, June 2016. https://doi.org/10.1109/TNS.2016.2565604.
- [3] D. Hauagge, S. Wehrwein, K. Bala and N. Snavely, "Photometric Ambient Occlusion for Intrinsic Image Decomposition," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 4, pp. 639-651, 1 April 2016. https://doi.org/10.1109/TPAMI.2015.2453959.
- [4] X. Kang, S. Li, L. Fang and J. A. Benediktsson, "Intrinsic Image Decomposition for Feature Extraction of Hyperspectral Images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 4, pp. 2241-2253, April 2015. https://doi.org/10.1109/TGRS.2014.2358615.
- [5] X. Jin and Y. Gu, "Superpixel-Based Intrinsic Image Decomposition of Hyperspectral Images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 8, pp. 4285-4295, Aug. 2017. https://doi.org/10.1109/TGRS.2017.2690445.
- [6] Kang, X., Li, S., Fang, L. et al. Pansharpening Based on Intrinsic Image Decomposition. Sens Imaging 15, 94 (2014). https://doi.org/10.1007/s11220-014-0094-8
- [7] S. Ono, T. Miyata and I. Yamada, "Cartoon-Texture Image Decomposition Using Blockwise Low-Rank Texture Characterization," in IEEE Transactions on Image Processing, vol. 23, no. 3, pp. 1128-1142, March 2014. https://doi.org/10.1109/TIP.2014.2299067.

- [8] Shao, P., Ding, S., Ma, L. et al. Edge-preserving image decomposition via joint weighted least squares. Comp. Visual Media 1, 37–47 (2015). https://doi.org/10.1007/s41095-015-0006-4
- [9] H. Duan and X. Wang, "Echo State Networks With Orthogonal Pigeon-Inspired Optimization for Image Restoration," in IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 11, pp. 2413-2425, Nov. 2016, https://doi.org/10.1109/TNNLS.2015.2479117.
- [10] Jian-Feng Cai, Bin Dong, Zuowei Shen, Image restoration: A wavelet frame based model for piecewise smooth functions and beyond, Applied and Computational Harmonic Analysis, Volume 41, Issue 1, 2016, Pages 94-138, ISSN 1063-5203. https://doi.org/10.1016/j.acha.2015.06.009.
- [11] M. Niknejad, H. Rabbani and M. Babaie-Zadeh, "Image Restoration Using Gaussian Mixture Models With Spatially Constrained Patch Clustering," in IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 3624-3636, Nov. 2015. https://doi.org/10.1109/TIP.2015.2447836.
- [12] Jun Liu, Ting-Zhu Huang, Ivan W. Selesnick, Xiao-Guang Lv, and Po-Yu Chen. 2015. Image restoration using total variation with overlapping group sparsity. Inf. Sci. 295, C (February 2015), 232–246. https://doi.org/10.1016/j.ins.2014.10.041
- [13] H. Zhao, O. Gallo, I. Frosio and J. Kautz, "Loss Functions for Image Restoration With Neural Networks," in IEEE Transactions on Computational Imaging, vol. 3, no. 1, pp. 47-57, March 2017. https://doi.org/10.1109/TCI.2016.2644865.
- [14] V. Papyan and M. Elad, "Multi-Scale Patch-Based Image Restoration," in IEEE Transactions on Image Processing, vol. 25, no. 1, pp. 249-261, Jan. 2016. https://doi.org/10.1109/TIP.2015.2499698.
- [15] Xiaoyong Shen, Qiong Yan, Li Xu, Lizhuang Ma, and Jiaya Jia. 2015. Multispectral Joint Image Restoration via Optimizing a Scale Map. IEEE Trans. Pattern Anal. Mach. Intell. 37, 12 (Dec. 2015), 2518–2530. https://doi.org/10.1109/TPAMI.2015.2417569
- [16] Ruxin Wang and Dacheng Tao. 2016. Non-Local Auto-Encoder With Collaborative Stabilization for Image Restoration. Trans. Img. Proc. 25, 5 (May 2016), 2117–2129. https://doi.org/10.1109/TIP.2016.2541318
- [17] H. Liu, R. Xiong, X. Zhang, Y. Zhang, S. Ma and W. Gao, "Nonlocal Gradient Sparsity Regularization for Image Restoration," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 9, pp. 1909-1921, Sept. 2017. https://doi.org/10.1109/TCSVT.2016.2556498.
- [18] H. Shen, L. Peng, L. Yue, Q. Yuan and L. Zhang, "Adaptive Norm Selection for Regularized Image Restoration and Super-Resolution," in IEEE Transactions on Cybernetics, vol. 46, no. 6, pp.

1388-1399, June 2016. https://doi.org/10.1109/TCYB.2015.2446755.

- [19] Y. Xie, Y. Qu, D. Tao, W. Wu, Q. Yuan and W. Zhang, "Hyperspectral Image Restoration via Iteratively Regularized Weighted Schatten p-Norm Minimization," in IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 8, pp. 4642-4659, Aug. 2016. https://doi.org/10.1109/TGRS.2016.2547879.
- [20] J. Zhang, D. Zhao and W. Gao, "Group-Based Sparse Representation for Image Restoration," in IEEE

 Transactions on Image Processing, vol. 23, no. 8, pp.

 3336-3351,
 Aug.
 2014.

 https://doi.org/10.1109/TIP.2014.2323127.
 2014.

[21] H. Fan, Y. Chen, Y. Guo, H. Zhang and G. Kuang, "Hyperspectral Image Restoration Using Low-Rank Tensor Recovery," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 10, pp. 4589-4604, Oct. 2017. https://doi.org/10.1109/JSTARS.2017.2714338.

 $\otimes \otimes \otimes$