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Abstract :  The goal of this paper is to suggest and establish 

an efficient iterative method based on matrix by matrix 

multiplications for finding the approximate inverse of non-

singular square matrices. We then analytically extend this 

proposed method so as to compute the Moore-Penrose 

generalized inverse of a non-square matrix. A theoretical 

analysis has been employed to compare the computational 

efficiency of the presented scheme with the other existing 

methods in the literature to show that it is economic. 

Numerical experiments are also executed to manifest its 

superiority.  
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I. INTRODUCTION 

The Moore-Penrose inverse of a matrix  

(also called pseudoinverse), denoted by , is a matrix 

 satisfying the following system of 

equations. 

 

where A* stands for the conjugate transpose of a matrix 

A.  

It is well known that for any matrix , its 

Moore- Penrose inverse exists uniquely. In fact, it is a 

generalization of the inverse of a non-singular matrix 

which plays an important role in various fields, such as 

eigenvalue problems, solution to various systems of 

linear equations, linear least square problems, and so on, 

see [4]. Of course, many important approaches for 

computing the Moore-Penrose generalized inversion 

have been developed. In these methods, direct methods 

usually tend to require a predictable amount of resources 

in terms of time and storage, which normally put them 

out of interest especially for the cases when A is sparse. 

At this time, iterative methods of the class of Schulz-

type can be taken into account.  

The well-known second order technique of this type is 

the Schulz method [11] defined by 

 (1.1) 

for finding the Moore-Penrose inverse. This scheme has 

interesting features of being  based exclusively on 

matrix-matrix operations. The Schulz iteration has 

polylogarithmic complexity and is numerically stable. 

Let us review some of the higher-order iterative methods 

for Moore-Penrose inversion. The perception and reason 

of constructing these higher-order schemes is that (1.1) 

is too slow at the beginning of the process before 

arriving at the convergence phase for general matrices, 

and this would increase the computational load of the 

whole algorithm used for Moore-Penrose inversion.   

Li et al. in [5] gave the following third order iterative 

convergent scheme, which is known as Chebyshev's 

method 

  (1.2) 

for k = 0, 1, 2,....... In fact, a general procedure for 

constructing such schemes for matrix inversion had been 

brought forward in  [7]. For instance, a high-order 

method of convergence order ten can be deduced as  

 (1.3) 

where  and k= 0,1,2..... It must be noted 

that in such constructions, each p-th order method, as the 

above one, needs exactly p times of matrix by matrix 

multiplications for  finding the Moore-Penrose inverse.  

In this paper, we present a new iterative method of the 

Schulz-type with tenth order of convergence for 

computing the Moore-Penrose inverse, but with less 

number of matrix by matrix multiplications (mmms) 

than  fifteen. This would make the method quite 

computationally efficient in contrast to the existing 

iterative methods of the same type, since the governing 

cost in implementing the Schulz-type methods is the 

cost of mmms. The remaining sections of this paper 

unfold the contents in what follows. Section 2 is devoted 

to the analysis of convergence which shows that the 
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method can be considered for the pseudoinverse as well. 

Section 3 infer that the new method is computationally 

economic. Subsequently, the method is examined in 

Section 4 numerically. Finally to end this paper, 

conclusion will be drawn in section 5.  

II. A NOVEL METHOD 

In this section, we present a new higher order iterative 

method whereas the number of mmms is lower than that 

corresponding method from the general schemes of 

[3,7]. Towards this aim, we suggest our proposed 

method as follows: 

 (2.1) 

Using proper factorization, we attain the following 

efficient matrix iterative method:  

 

wherein   and k = 0, 1, 2, : : : . Note that the 

method (2.2) needs seven mmms to achieve high 

convergence rate ten. This fact  is about to be 

theoretically obtained in the following subsection. 

Theorem 2.1. Assume that  is an 

invertible matrix with real or complex entries. If the 

initial guess V0 satisfies  

 

then, the iteration (2:2) converges to A
-1

 with at least 

tenth convergence order.  

Proof. For the sake of simplicity, assume that E0 = I - 

AV0 and Ek = I - AVk stand for the symmetric residual 

matrix. It is straightforward to have  

 

which further implies that  

 
(2.4) 

Hence by taking an arbitrary norm from both sides of 

(2.4), we obtain  

 

In addition, since  by relation (2.4) and 

using mathematical induction, we have the following 

relation  

 

If we take into consideration  then  
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Furthermore, we get that  

 (2.8) 

 

Now, we must show that the tenth order of convergence 

is obtained for the sequence  To do this, we 

denote   as the error matrix in the 

iterative procedure (2.2). Using (2.4) we have 

(2.9) 

which further implies that 

  

This is simplified as  

 

And hence  

 (2.12) 

The error inequality (2.12) clearly reveals that the 

iteration (2.2) converges with tenth order to A
-1

. This 

completes the proof.  

At this time, we discuss an application of (2.2) for 

finding the Moore-Penrose inverses. In order to validate 

the applicability of our proposed scheme, we must start 

it with a viable initial matrix. Ben-Israel and his 

colleagues in [1,2] used the method (1.1) with the 

starting value  

 (2.13) 

where  and  denotes the spectral 

radius.  

Based on the following Lemma, we show analytically 

that in case of having singular or rectangular matrices, 

scheme (2.2) converges to the Moore-Penrose 

generalized inverse.  

Lemma 2.2. For the sequence  generated by 

the Schulz-type iterative method (2:2), it holds that  

 

Proof. The proof of this lemma is based on mathematical 

induction. Such a process is similar to the Lemma 2.1 of 

[9], and it is hence omitted.  

Before stating the main theorem for computing Moore-

Penrose inverse, it is required to recall that for  

with the singular values  and the 

initial approximation  it holds 

that 

 (2.14) 

We are about to use this fact in the following theorem so 

as to find the theoretical order of the reported method 

(2.2) for finding the Moore-Penrose inverse (see [18] for 

more details).  

Theorem 2.3. For the rectangular complex matrix 

, with the singular values 

 and the sequence 

generated by (2:2), using the initial 

approximation  the sequence converges to the 

Moore-Penrose inverse  with tenth order of 

convergence, provided that  

Proof. Following the Lemma 2.2, and  the 

error matrix for finding the Moore-Penrose inverse, we 

have (note that  
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On the other hand, from the properties of Moore-

Penrose inverse , we have  

 

The use of these relationships implies that  

 

So, for any matrix norm  we obtain  

 

Applying (2.14), which implies that  and a 

similar reasoning as in (2.6)-(2.8), one can obtain. 

 (2.9) 

Finally, using the properties of the Moore-Penrose 

inverse  and Lemma 2.2, it would be now easy to find 

error inequality of the new scheme (2.2) as follows:   

 

Thus  that is, the sequence of (2.2) 

converges to the Moore{Penrose inverse in tenth order 

as . This ends the proof.  

III. COMPUTATIONAL EFFICIENCY 

Let us consider the following computational efficiency 

index as given by Traub in Appendix C of [19]:  

 (3.1) 

whereas C stands for the total computational cost of an 

algorithm and p is the local convergence order.  

It is clear that the most impressive cost per cycle of each 

Schulz-type method is matrix by matrix multiplications. 

Let us assume that the cost of mmms be unity (as Traub 

made in [19]). Then the computational efficiency index 

with  number  of mmms per step becomes  

   (3.2)  

where s is the number of iterations (steps) that an 

iterative algorithm requires to converge.  

Soderstrom  and Stewart in [12] illustrated that the 

approximate number of iterations that the Schulz scheme 

(1.1) requires in a 

 

Fig. 1 The comparison of computational efficiency 

indices for different methods. 

machines precision to coverage is given by 

 

where k2 denotes the condition number of the matrix A 

in norm 2. Hence, similar to (3.3) under the same 

conditions, the approximate required number of 

iterations, for a pth-order iterative method to converge 

[15] is given by 

            (3.4) 
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Therefore, the computational efficiency index of a pth-

order matrix iterative method with  number of matrix 

by matrix multiplications per cycle would become  

 

Using this index, a comparison has been made in Fig.1 

of the iterative algorithms(1.1), (1.2), (1.3) and (2.2) 

denoted by "SM", "CM", "KSM" and "PM", 

respectively. Fig.1 reveals that by growth of the 

condition numbers, the computational efficiency of all 

methods decreases. But here our proposed algorithm 

shows its dominancy in terms of the computational 

efficiency. 

Remark 3.1. The new iteration method (2.2) possesses 

tenth-order of convergence using only seven matrix by 

matrix multiplications, while the schemes (1.1), (1.2) 

and (1.3) reach 2nd, 3rd, and 10th orders, respectively, 

by consuming 2, 3, and 10 matrix by matrix 

multiplications. Therefore, if one applies the definition 

of informational efficiency index as  in 

which  stands for the local order of convergence and  

is the number of matrix by matrix multiplications per 

computing step, then the reported method (2.2) achieves 

the efficiency  which beats its other 

competitors,  and 

 

This reveals that the iterative process (2.2) reduces the 

computational complexity by using less number of basic 

operations and leads to the better equilibrium between 

the high speed and the operational cost.  

IV. NUMERICAL EXPERIMENTS 

We herein present some numerical tests to illustrate the 

efficiency of the suggested method to compute the 

Moore-Penrose inverse. For numerical comparisons, we 

have used the methods "SM", "CM", "KSM" and "PM", 

in double precision arithmetic. The computer 

specifications are Microsoft 7 Windows 7 Ultimate 

Intel(R), Core(TM)2 Duo CPU E7200 @ 2.53 GHz, 

with 2 GB of RAM.  

Example 1. This experiment is devoted to the 

applicability of our proposed method for  finding the 

Moore-Penrose inverse of the following 20 large random 

sparse complex matrices of the size 

  

 

in machine precision with stopping criterion 

 

In this example, the initial approximations computed in 

accordance to the Theorem 2.3 for each random test 

matrix and is written as V0= ConjugateTranspose 

[A[j]]* (1./((SingularValueList[A[j],1][[1]])
2
)) in our 

MATHEMATICA codes. As the programs were 

running, we calculated the rnning time using the 

command Absolute Timing [] to report the elapsed 

computational  

 

Fig.2 The results of comparisons in terms of number of 

iterations for Example 1. 

 

Fig.3 The results of comparisons in terms of 

computational time for Example 1.  

time (in seconds) for the experiment. Here, we also 

defined the identity matrix by Id = 
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SparseArray[{{i_,i_}1.}, {m,m}, 0.]. while maximum 

number of iterations is set to 100.  

The results of comparisons in terms of number of 

iterations and elapsed computational time are reported in 

Fig.2 and Fig.3, respectively. The attained results 

reverify the robustness of the proposed iterative method 

(2.2) by a clear reduction in the number of iterations and 

the elapsed time. 

V. CONCLUSION 

In this work, we have developed a new iteration scheme 

for  finding the matrix inversion and then extended it for 

Moore-Penrose generalized inverse. It has been proved 

that the method attains tenth order by consuming only 

seven matrix by matrix multiplications per iteration. 

Hence, it possesses higher informational efficiency 

index than the other existing methods in this literature, 

which makes it efficient in finding the Moore-Penrose 

generalized inveres. Latter fact is additionally confirmed 

by numerical experiments. 
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