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Abstract— Modern graphics processing units (GPUs) allow 

for a high throughput in processing a massive amount of 

floating-point operations. The sparse matrix-vector (SpMV) 

product is of particular interest, and subject to intensive 

research in the GPGPU (general-purpose GPU) 

computation community, because it is repeatedly used in 

numerous scientific and engineering applications such as, 

for example, circuits simulation and ground-water model 

simulation among others.  

Bearing this in mind, we have studied the impact of the 

sorting of matrix rows, according to their length (that is, by 

the number of nonzero values), on the GPU performance in 

the computing of the SpMV product, using synthetic 

matrices and benchmark matrices of different dimensions. 

Although sorting the rows is a commonly used technique in 

matrix operations, our study shows that sorting the rows by 

their length is useless regarding time performance gains in 

current GPU architectures. 

Index Terms— CUDA, data parallelism, general purpose 

GPU, sparse matrix-vector product.  

I. INTRODUCTION 

This article describes a study about the impact of 

reordering the rows of a sparse matrix on the performance 

of the sparse matrix-vector (SpMV) product operation 

using Nvidia graphics processing units (GPUs). Albeit the 

SpMV product is a very simple operation, we have to be 

aware that it is a critical operation to the overall 

performance of a number of applications in science and 

engineering [11,16] because it is executed thousands or 

even millions of times, as happens in iterative methods for 

solving sparse linear systems [14].  

GPUs are especially useful to carry out numerically 

intensive computations with data parallelism, where 

analogous calculations are performed on large quantities 

of data that are regularly organized (for example, vectors 

and matrices). Several studies show that GPUs can deliver 

a very high performance in computations involving dense 

matrices [1,19]. However, unlike dense matrices, the 

sparse matrices have not a regular structure, what does 

affect the performance of the solver of sparse matrix 

linear systems. But, as the practice shows, the 

performance of a solver of this kind also depends on 

further three important cornerstones:  

- matrix storage formats; 

- SpMV product algorithms; 

- reordering algorithms. 

Note that the focus of this paper is on the impact of row 

reordering on the overall performance of sparse 

matrix-vector (SpMV) product algorithms using different 

storage formats. More specifically, our work studies the 

impact of reordering the matrix rows on the SpMV 

product operation, using the length of each row as a 

reordering criterion. The idea behind this procedure of 

reordering is to get a better load balancing across the 

threads of each scheduling unit, even if that is obtained at 

the expense of some loss of locality of the rows and this is 

the main contribution of this paper. 

In this paper we start by briefly describing the parallel 

computing architecture of GPU/CUDA in Section II. 

Afterwards, we proceed to Section III, where the storage 

formats for sparse matrices are also briefly described. The 

SpMV algorithms are approached in Section IV.  Next, in 

Section V, we present the experimental results obtained in 

studying the impact of sorting the matrix rows on the 

performance of the SpMV product. Section VI discusses 

those results obtained in testing. Finally, in Section VII 

we present the conclusions and some hints for future 

work. 

II. GPU/CUDA PARALLEL COMPUTING 

ARCHITECTURE 

A. Nvidia GPU Architecture 

An Nvidia GPU is an array of a number of multithreaded 

streaming multiprocessors with a global memory space. 

Each multiprocessor consists of a set of scalar processor 

cores (each with a set of registers) communicating via 

shared memory [21]. These many-core processors are 

capable of very high throughput computations, but they 

do not possess large caches that allow for memory access 

optimisation. To hide the high latency in global memory 

access, and take advantage of GPU processing power, it is 

necessary to running thousands of threads. It is also 

necessary to distribute the workload over the threads of 

warps (i.e., scheduling units in CUDA) in a balanced 

manner.  Each warp only terminates when all its threads 

got concluded.  
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B. CUDA Parallel Computing Model 

The Compute Unified Device Architecture (CUDA) was 

designed to take advantage of the many-core processors 

of Nvidia GPUs [12]. Basically, a CUDA application 

consists of a process running on host side (CPU) that 

launches functions (kernels) on device side (GPU). Each 

kernel running on GPU side is simultaneously executed 

by a high number of threads. The threads are organized in 

blocks, and the set of blocks constitutes an execution grid.  

We can say that one thread is associated to one scalar 

processor core, a block of threads is associated to one 

multiprocessor, and a grid of blocks is mapped onto the 

GPU (see Figure 1). Once a block of threads is assigned to 

a multiprocessor, it becomes responsible by splitting them 

into warps that get scheduled across several cores. 

Threads that belong to the same block may exchange and 

share data via the multiprocessor shared memory. Blocks 

waiting to be processed are automatically launched as 

soon as one of the multiprocessors becomes available. 

  
Fig. 1 Association between the structure of the software and the architecture of the hardware (adapted from [12]) 

 

Global memory can be accessed by any thread in the 

program, but has high access latency. Beyond global 

memory, the GPU has two additional (read-only) 

memories, texture memory and constant memory. 

Whenever an element is stored in the texture cache, it 

passes to be accessed in texture memory, which is far 

faster than global memory, in subsequent requests.  

It is clear that, before launching a kernel on GPU side, the 

data must be copied into the global memory of GPU. 

Terminated the execution of the kernel, the output results 

must be copied back to CPU memory. 

III. SPARSE MATRIX STORAGE 

FORMATS  

A sparse matrix is usually stored in a compact format in 

order to just keep the nonzero values and its indexed 

location. The most common matrix storage formats in 

GPU-based sparse linear systems are the following: 

- the coordinate format, also known as COO format [14].  

- the compressed sparse row (CSR) format [14]; 

- the ELL format and its variants [7].  

For a visual representation of these storage formats, the 

reader is referred to [2], [17].  

A. The COO Format 

 The COO format is the reference storage format for 

sparse matrices. Let N be the number of nonzero elements 

of the sparse matrix A. In the COO format, the matrix A 

translates itself into three vectors (or one-dimensional 

arrays) of size N: the row indexing vector, where the row 

indices of the nonzero elements are stored; the column 

indexing vector, where the column indices of the nonzero 

elements are stored; the data vector that stores the nonzero 

elements themselves.  

This format is used to initially store all the matrices 

studied in this work. Usually the matrices are converted to 

compressed formats which can lead to no negligible 

savings in storages [14]. The COO format implies a 

number of GPU global memory accesses larger than the 

use of compressed formats which results in a performance 

penalization.    

B. The CSR Format 

The CSR format extends the COO format. The main 

difference between these two formats is that the 

row-indexing array of COO format is replaced by a 

shorter array in the CSR format. The i-th component of 

this array contains the number of nonzero elements of the 

0- to i-th rows of the sparse matrix. Therefore, this shorter 

array is an array of row offsets, as needed to index the 
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elements of the second and third arrays, say the column 

indexing array and the data array, respectively. 

C. The ELL, HYB and ELL-r Formats 

The ELLPACK/ITPACK or ELL format uses two vectors, 

one for the nonzero values and another for the column 

indices. Supposing a matrix with M rows where K is the 

maximum number of nonzero elements per row, the 

nonzero values are stored by columns assuming that each 

row has length K. In rows with a number of nonzero 

elements less than K the final positions will be 

zero-padded to length K. Then, the first M elements of the 

data vector will be the first nonzero element of the first 

row, the first nonzero element of the second row and so on 

until the first nonzero element of the M
th

 row. The second 

vector, the column indices vector, corresponds to a 

M-by-K matrix stored in column major order, where each 

position contains the column of the value that is at the 

corresponding position of the data vector.  

For matrices where the length of the rows has high 

variability, the percentage of zeros in the data vector is 

high and the performance decreases. For those cases, the 

hybrid format (HYB) proposed in [2] combines ELL and 

COO formats. When a matrix has a certain number of 

rows with length greater than an empirical threshold, the 

typical number of nonzero values is stored in the ELL 

format and the remaining entries of larger rows are stored 

in the COO format.  

Finally, the ELLPACK-r (ELL-r) format optimises the 

ELL format by using a third vector to store the number of 

nonzeros of each row [17], [18]. 

IV. SPARSE MATRIX-VECTOR PRODUCT 

ON GPU 

Now, let us see how the SpMV operation can be 

implemented on GPU. In fact, a number of sparse 

matrix-vector product algorithms can be classified in the 

basis of the dichotomy between the number of threads and 

the structuring element of the matrix as follows: 

- 1 thread per nonzero matrix element (TpE algorithm); 

- 1 thread per matrix row (TpR algorithm); 

- 1 warp (actually, 32 threads) per matrix row (WpR 

algorithm). 

Moreover, according to the work presented in [2], the 

results produced by combining those three storage matrix 

formats and those three SpMV product algorithms suggest 

that the best performance of the SpMV product is attained 

in two circumstances: 

- using TpR algorithm together with the ELL format. 

- using WpR algorithm together with the CSR format; 

The WpR algorithm is the most efficient algorithm only 

when the length of the rows is long enough to feed the 

entire warp of threads. With the WpR algorithm each 

matrix row is processed by one warp, thus sorting rows is 

useless. 

A. Thread per Row Algorithm Using the ELL Format 

Before proceeding any further with the TpR algorithm to 

carry out the SpMV product within the ELL format, we 

need more context about the ELL format itself. 

Indeed, a previous study presented in [2], [3] shows that 

the CUDA implementation of the SpMV product 

produces the best performance using the ELL storage 

format, provided that the maximum number of nonzero 

elements per row does not substantially differ from the 

average. This format allows that the matrix data to be 

processed by one warp is stored in contiguous memory 

positions and, therefore, the memory access times can be 

shortened. If the matrix rows handled by each warp have 

approximately the same length (that is, the same number 

of nonzero elements) then all threads will be 

simultaneously occupied without wasting of computing 

capacity. But, if the number of nonzero elements per row 

varies significantly, those authors propose the hybrid 

format (HYB) described in Section III. C. 

Recently, some proposals on automatically tuning the 

SpMV operations on GPU have appeared in the literature 

[5], [6], [10]. In [10], a new modified version of ELL, the 

sliced ELL format is proposed. In this format, the matrix 

is divided into slices, that is, in strips of a number of 

adjacent rows, being each slice separately stored in the 

ELL format. A variable number of threads can be 

assigned to each slice of matrix rows. In [5] another 

modification to ELL, the blocked ELL (BELLPACK), is 

proposed. The matrix is divided into small dense blocks 

that were stored contiguously. In that way, we can reduce 

the amount of storage needed for matrices having a block 

structure. In an analogous manner to the sliced ELL 

format, the matrix in the blocked ELL format is also 

divided into slices. In both cases, the slicing process is 

combined with a row reordering process in order to bring 

together rows of similar length, as well as to reduce 

storage. But, as referred in [10], reordering rows may 

result in degrading the performance. Adjacent rows 

usually have closer nonzero elements than unrelated rows, 

so that the shuffling of rows can increase the number of 

cache misses on accesses to vector to be multiplied by the 

sparse matrix. 

Some works on integer sparse-matrix product in GPUs 

also propose reordering the rows by their length before 

building sliced formats [15] and blocked formats [4]. 

Finally, row sorting is also used in [9], having these 

authors proposed a new storage format with the intent of 

reducing the memory footprint of the ELL format.  

On the other hand, performing the SpMV product on GPU 

using the TpR (one thread per row) algorithm on a 
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ELL-format matrix makes the threads that belong to the 

same warp to access contiguous memory positions at each 

iteration.  When the thread i processes the row i, it 

accesses the j-th component of the row i in the j-th 

iteration. As the matrix is stored in the column major 

order, all these elements are stored in consecutive 

memory positions. In the same warp, a single instruction 

is executed at a time across all its threads, following a 

Single Instruction Multiple Thread (SIMT) model. Thus, 

we have all threads in the warp accessing contiguous 

memory positions. This pattern of memory access, known 

in CUDA as “coalesced memory access”, is that one that 

allows for the best performance [8]. 

If the matrices have rows with quite a variable number of 

nonzero elements, the same warp can process rows with 

very different lengths. In other words, we have threads 

with little work and threads with a lot of work. According 

to the SIMT execution model, the warp just finishes when 

all the threads have terminated. Therefore, we can expect 

that sorting the rows by their length leads to a more 

balanced work on GPU, resulting from it a possibly better 

performance. In the ELL-r format, the use of a vector with 

a number of nonzero elements per row, as referred before, 

allows stopping the computation when a thread has not 

more elements to process, without changing the memory 

access pattern (even if one or more threads do not access 

the memory, the scheme of contiguous access is not 

broken). 

B. Warp per Row and Thread per Row Algorithms Using 

the CSR Format 

With the CSR format, a good performance can be 

obtained using the WpR (warp per row) algorithm, where 

all warp threads process the same matrix row using a 

parallel reducing algorithm [2]. In this case, the execution 

model in the several multiprocessors of a GPU is SPMD 

(single program multiple data), which means that a new 

warp is launched when the execution of a warp terminates, 

and this is so regardless of what happens in other 

multiprocessors. Concerning the memory access, the 

WpR algorithm is more efficient than the TpR algorithm, 

because it accesses data and indices contiguously (data is 

stored in row major order and all threads access elements 

from the same row). This does not happen in the TpR 

algorithm with the CSR format because the contiguous 

elements are not accessed simultaneously by all threads.  

The main drawback of the WpR algorithm is that it needs 

to have enough work for each warp, which requires that 

the matrix rows have a number of nonzero elements 

greater than the warp size (32). Then, as all the threads of 

a given warp are processing the elements of the same row, 

sorting the rows ends up having no impact on 

performance. In the case of the TpR algorithm with the 

CSR format, when the matrix has a highly variable 

number of nonzero values per row, each warp just finishes 

when the longest row finishes, and thus as with ELL 

format sorting the rows may improve performance. 

V.  TESTING RESULTS 

A. Experimental Testbed 

The host machine used in this work was an Intel Core 2 

Quad Q9550 at 2.83 GHz with 4 GB of RAM and running 

the operating system Microsoft Windows XP Professional 

64-bits. We also used two graphics cards, the Nvidia 

GeForce GTX 295 and the GeForce GTX 590 

programmed with CUDA. 

The GeForce GTX 295 (base on the GT200 architecture) 

used with synthetic matrices, has 30 multiprocessors, each 

one with 8 cores (at 1.24 GHz). This GPU has 1GB of 

global memory and a “compute capability” of 1.3.  

The GeForce GTX 590, used in the last experiments of 

our work, is equipped with a two full size GF110 Fermi 

GPU’s. Each GPU has 16 multiprocessors, each one with 

32 cores (at 1,214 GHz), 1.6 GB of global memory and a 

“compute capability” of 2.0. 

This GPU based on Fermi architecture has a new memory 

hierarchy in which it is possible to configure different 

cache levels; unlike previous architectures different 

kernels can execute concurrently; a new dual warp 

scheduler is introduced; now each multiprocessor has two 

warp schedulers and two instruction dispatch units, 

allowing two warps to be issued and executed 

concurrently [13]. 

B. Thread per Row versus Warp per Row Algorithms on 

Synthetic Matrices 

We used real-valued square matrices to evaluate the 

performance of the SpMV product. For that purpose, we 

randomly generated single precision sparse matrices of 

order 4096, 8192 and 16384. More specifically, about 1% 

to 20% of nonzero elements were generated for each 

matrix row. Also, the column index of each nonzero value 

was obtained randomly. Doing so, each matrix ended up 

having about 10% of nonzero values. However, randomly 

generated matrices have a high variability in respect to 

row length, assuming here that the length of a row is the 

number of its nonzero elements. Complete results of these 

experiments can be seen in [22]. With respect to the TpR 

algorithm, we compared the kernel execution times for 

both formats, with and without sorting of rows, 

considering three block sizes: 32 (1 warp), 64 and 128 

threads. We have concluded that row sorting in the CSR 

format can give a small advantage (about 12% in the best 

case of having the smaller matrix order and the block size 

of 128).  

For the ELL format, we used the ELL-r version and the 

results are much better than for CSR format. For the 

studied matrices, the gain obtained with row sorting can 
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be about 30% (to the matrix of order 16384 and a block 

size of 32). Increasing the block size causes in some cases 

a very slight increase in the performance, but because this 

is not a general rule the following experiments were 

carried out using a block size of 32. 

Table 1 shows the five testing setups involving CSR and 

ELL-r formats, with and without row sorting. The first 

four setups made usage of the TpR algorithm, while the 

last setup used the WpR algorithm. As the results show, 

this last setup consisting of the CSR format plus WpR 

algorithm surpasses the other setups in terms of timing 

performance. 

Considering that in many applications the matrices have 

higher percentages of rows with small length, we 

generated matrices with the same structure as before, but 

decreasing the percentage of nonzero values. The results 

of the SpMV product for the matrix with order of 16384, 

using a block size of 32, are shown in Table 2. The 

execution times obtained in CPU are also presented as a 

baseline that allows getting an insight of the advantage of 

using the GPU. The CSR format is here considered 

because it is much faster than the ELL format in CPU. 

As can be seen, when decreasing the percentage of 

nonzero values, the “ELL-r sorted” plus TpR surpasses 

the WpR algorithm in performance when such a 

percentage goes down to 2%. The column 

GPUsor/GPU*100 indicates the percentage of the 

execution time of the product with row sorting in relation 

to the execution time of the same operation without row 

sorting.  

 

Table 1. Best execution times (in milliseconds) and the corresponding block sizes for each GPU case studied applied to 

synthetic matrices with 10% of nonzero values 
Matrix 

order 

GPU, CSR (Thread per Row) GPU, ELL-r (Thread per Row) GPU, CSR 

 row sorted  row sorted Warp per Row 

time (ms) block size time block size time (ms) block size time (ms) block 

size 

time (ms) block 

size 

4096 4.24  32 3.72 128 1.40 32 1.23 32 0.83 32 

8192 20.22 128 18.80 64 4.64 64 3.89 64 2.98 32 

16384 93.37 128 88.14 128 17.55 128 14.11 32 11.45 32 

Table 2. Execution times (in milliseconds) when decreasing the percentage of nonzero values  (synthetic matrix of order 

16384, block size = 32) 

% of 

Nonzero 

CPU 

CSR (ms) 

GPU, ELL-r, Thread per Row GPU, CSR 

WpR (ms) 

Maximum 

row length Without row sorting (ms) With row sorting (ms) GPUsor/GPU*100 

5% 45.48 9.77 7.11                72.8% 6.77 1638 

2% 18.50 3.98 2.90                 72.9% 3.06 655 

1% 9.39 2.07 1.58                   76.3% 1.67 327 

0.1% 1.23 0.32 0.27                    90.0% 0.47 32 

Table 3. Execution times (in milliseconds) when increasing the percentage of rows with length <= 32 (synthetic matrix of 

order = 16384, block size = 32) 

% of row length 

<= 32 

% of nonzero 

elements 

CPU GPU 

CSR (ms) ELL-r TpR (ms) ELL_R sorted TpR (ms) CSR  WpR (ms) 

10% 4.5% 42.03 9.22 6.46 6.35 

30% 3.6% 32.74 8.32 5.25 5.22 

50% 2.6% 23.35 7.30 3.40 4.31 

70% 1.6% 14.64 6.21 2.74 3.63 

90% 0.6% 5.77 5.09 1.94 3.11 

100% 0.1% 1.25 0.32 0.29 0.66 

 

Sorting the rows is less advantageous when the percentage 

of nonzero elements and the maximum row length 

decreases, but the results point to that for matrices with a 

small percentage of nonzero values the best algorithm is 

the “one thread per row” for the ELL-r format with row 

sorting. 

Furthermore, we studied what happens when increasing 

the percentage of rows with length smaller than the warp 

size. Table 3 shows the results for the matrix of order 

16384, where a percentage of rows have a random length 

smaller than the warp size (32) and the others have a 

length between 32 and 10% of the matrix order. Again, we 

considered a block size of 32, and the execution times are 

in milliseconds. As can be seen, when the percentage of 

rows with length smaller than 32 reaches the 70%, the 

ELL-r TpR algorithm with sorting surpasses the WpR 

algorithm in performance. Again, when the percentage of 

nonzero values is below the 2%, the ELL-r TpR algorithm 

with sorting becomes faster than the WpR algorithm.  

In summary, we conclude that when the percentage of 

nonzero values decreases, the ELL-r TpR algorithm with 

sorting performs better than the CSR WpR. The same 

happens when the percentage of rows with length smaller 

than 32 increases. 
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C. Benchmarking Matrices using the GTX 295 GPU 

We have also studied the impact of sorting the rows for 

the matrices used in the studies [2], [3], [17], [18] which 

were originally used in the multi-core benchmarking 

study of Williams et al. [20]. From this benchmark we did 

not consider four matrices: “dense”, “QCD”, “webbase” 

and “LP”. In the first two matrices all the rows have the 

same length, thus sorting the rows is not applicable. With 

the last two matrices we had memory restrictions to 

implement the ELL format without partitioning the 

matrix. When studying all the remaining 10 matrices, we 

also used a block of 32 threads and the average execution 

times (in milliseconds) presented in Table 4 were 

obtained with 500 runs of each kernel in the same GPU as 

in the previous experiments, the GTX 295. 

In this table we can compare the CPU execution times 

(CSR format) with the GPU execution times obtained 

using six setups. The first four GPU setups use global 

memory on GPU side, while the last two use GPU texture 

memory to access the vector X. Besides, the first three and 

the last two setups make usage of the ELL formats 

together with the TpR algorithm to accomplish, while the 

fourth setup tries to take advantage of the CSR format and 

of the WpR algorithm. As can be seen, row sorting only 

has advantage in three cases (Economics, Circuit and 

Harbor). For the other matrices, the execution time after 

sorting the rows is worse than before.  

To better understand the results we have analysed the 

longest row of each warp before and after sorting the 

rows. We will call LRW (longest row of the warp) to the 

size of the longest row processed by the warp. Especially 

in the Economics and Circuit matrices after sorting, the 

number of warps with a small LRW grows significantly 

(decreasing the number of warps with big LRW). This 

happens in the matrices with high row length variability 

inside each warp. After sorting, small rows were not 

mixed with big rows. Figure 2 shows a graph with the 

number of nonzero elements per row to the Circuit matrix, 

which is the one that presents the biggest advantage when 

sorting the rows. As can be observed in the Circuit matrix, 

there is high variability of row lengths. Figure 3 shows the 

graph for the Wind Tunnel matrix. Here the variability of 

row lengths is clearly smaller.  

 

 
Fig. 2. Graph with the number of nonzero elements per row for the Circuit matrix. 

 

 
Fig. 3. Graph with the number of nonzero elements per row for the Wind Tunnel matrix. 

 

Studying the memory accesses, we have verified that the 

difference in the execution times are mainly due to the 

access to the vector X. Table 5 shows the following for 

each matrix: characteristics of the matrix (the number of 

nonzero elements – nnz, the percentage of nonzero 

elements and the average number of nonzero elements per 

row); the time (in milliseconds) spent in sorting the rows 

(via the qsort C/C++ function); the performance in 

GFLOPS for the TpR algorithm when using the formats 

ELL-r and for ELL-r sorted when using the texture 

memory. It was calculated by 2*(number of nonzero 

values)/time required for one SpMV product. Concerning 
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the time needed to sort, it should be noted that usually real 

applications involve a great number of iterations with the 

rows being sorted just once in the beginning of the 

process. The last columns of Table 5 present the average 

of the LRWs before and after sorting. The last column is 

the percentage ratio of the average of the LRWs after 

sorting to the average before sorting. As can be seen, we 

get an advantage in sorting when that ratio is 66% or less. 

Computing this ratio for previous synthetic matrices, with 

10% of nonzero elements, we get a value of 52.2%.  

Analysing the LRWs before and after sorting, the results 

point to that with this GPU (GTX 295) we have advantage 

in sorting rows when the average of the LRWs decreases 

to about 66% or less in relation to the value before sorting.

  

Table 4. Execution times (in milliseconds) for matrices of Williams multi-core benchmarking [20]  with a bock size of 32 

running in a GTX 295 
Matrix Order CPU GPU GPU  texture 

CSR 

(ms) 

TpR ELL 

std (ms) 

TpR ELL-r  

(ms) 

TpR ELL-r 

sorted (ms) 

WpR CSR 

(ms) 

TpR ELL-r 

(ms) 

TpR ELL-r sorted 

(ms) 

Economics 206500 5.24 2.10 1.60 0.945 3.81 1.21 0.708 

Accelerator 121192 5.27 0.825 0.665 0.830 2.25 0.504 0.685 

Cantilever 62451 7.10 0.867 0.751 0.976 1.35 0.588 0.622 

Epidemiology 525825 7.02 0.776 0.745 0.753 7.54 0.685 0.687 

Protein 36417 7.76 1.658 1.08 1.36 1.26 0.787 0.857 

Spheres 83334 10.12 1.41 1.02 1.45 1.98 0.827 0.915 

Ship 140874 14.35 2.26 1.54 2.84 2.87 1.23 2.13 

Wind Tunnel 217918 20.60 6.56 2.01 3.56 4.27 1.55 2.14 

Circuit 170998 4.619 9.90 2.11 0.919 3.07 1.78 0.793 

Harbor 46835 4.578 1.69 1.27 1.03 1.41 0.811 0.614 

Table 5. Features, sorting time, GFLOPS and average of warp lengths of Williams benchmarking matrices [20]. 
Matrix Nº of nonzero 

elements 

(nnz) 

% of 

nnz 

Av. of 

nnz 

 per row 

Sorting 

Time 

(ms) 

GFlops 

TpR ELL-r 

(Texture) 

GFlops 

TpR ELL-r 

Sorted (Texture) 

Average of LRWs 

Before 

Sorting (1) 

After 

Sorting (2) 

Ratio 

(2) / (1) 

Economics 1273389 0.003 6 12.2 2.1 3.6 22.4 6.18 27% 

Accelerator 1362087 0.009 22 7.3 5.4 4.0 16.1 11.2 70% 

Cantilever 2034917 0.050 65 3.9 6.9 6.5 37.6 32.6 87% 

Epidemiology 2100225 0.0003 4 9.8 6.1 6.1 3.99 3.99 100% 

Protein 2190591 0.165 119 3.6 5.6 5.1 90.3 60.3 67% 

Spheres 3046907 0.044 72 5.0 7.4 6.7 42.2 36.6 87% 

Ship 3977139 0.015 28 10.5 6.5 3.7 40.0 28.3 71% 

Wind Tunnel 5926171 0.012 53 5.3 7.6 5.5 31.0 27.2 88% 

Circuit 958936 0.003 6 9.0 1.1 2.4 14.1 5.66 40% 

Harbor 2374001 0.110 50 3.5 5.8 7.7 76.5 50.7 66% 

 

D. Benchmarking Matrices using the GTX 590 GPU 

Finally we run the same code on the Fermi GPU (the GTX 

590) for the same benchmarking matrices using just the 

global memory and the ELL format. The TpR algorithm is 

applied to the ELL standard format and to ELL-R with 

and without sorting.  In Table 6 the execution time for 

each matrix when using a block size of 32 is presented. 

Comparing these results with the ones obtained with the 

GTX 295 card (Table 4) it can be seen that sorting the 

rows still having advantage for the matrices “Economics” 

and “Harbor”, but now the difference to the case without 

sorting is quite smaller. For all the other matrices sorting 

the rows has no advantage.  

For this card we also consider block sizes of 64, 128, 256 

and 512. Table 7 presents just the best execution time 

obtained for each matrix and the corresponding block 

size. As can be seen, for all the studied matrices, the best 

execution time of the SpMV product is obtained with the 

ELL-R format without sorting. 

In the Fermi architecture, each multiprocessor has 32 

cores, a fourfold increase over the GT200 architecture, 

and allows two warps to be executed concurrently. Then 

considering blocks with just 32 threads in Fermi card is a 

wasting of resources and justifies the similar results in 

both GPUs when using a block of 32 threads. Increasing 

the block size reduces significantly the execution time in 

all the cases and sorting the rows in the benchmarking 

matrices does not present any advantage. As referred 

before the original positions of the rows present a better 

memory access pattern in accessing the correspondent 

vector values. 

To measure the performance gain with sorting, 

independently of the cost in accessing the vector X, we 

changed the previous kernel in order to access 

sequentially the vector X, instead of accessing the right 

positions. With this new kernel that accesses the initial 

positions of X, a wrong result vector is produced. 

However it shows the net gain obtained when the work of 

each warp is balanced across its threads.  

Table 8 shows the execution times for Williams’s 

benchmark in a GTX 590 GPU when using this kernel for 

the TpR algorithm applied to ELL-R format with and 

without sorting. We consider block sizes of 32, 64, 128, 

256, 384 and 512. In all the matrices and for all the block 

sizes, the best execution times when accessing 

sequentially the vector X were obtained with the version 

that sorts the matrix rows. Furthermore for all the 

matrices, the best execution time is obtained with a block 



International Journal on Advanced Electrical and Computer Engineering (IJAECE) 

______________________________________________________________________________________________ 

_______________________________________________________________________________________________ 

ISSN(Online): 2349-9338, ISSN(Print): 2349-932X  Volume -1, Issue -2, 2014  

8 

size of 256. That value (that is, 8 times 32) could be 

expected considering that this GPU, as was referred 

before, has four more cores than the GTX 295 and 

launches two warps at a time.  In table 8, just the execution 

times for this block size are presented; column three 

presents the execution times before sorting and column 

four the execution times after sorting. The last column of 

table 8 presents the percentage ratio of the execution time 

after sorting to the execution time before sorting. As can 

be seen from Table 8, in all the cases it is advantageous to 

sort the rows. The biggest advantage is for the Economics 

matrix with a value of 59.3% (obtained from 100 minus 

40.7) and for the Epidemiology matrix the advantage is 

almost non-existent. In this last case, most of the matrix 

rows have the same length. 

 

Table 6. Execution times (in milliseconds) for matrices of Williams multi-core benchmarking [20]  with a bock size of 32 

running in a GTX 590 GPU 

Matrix Block size GPU 

TpR ELL standard (ms) TpR ELL-r (ms) TpR ELL-r  Sorted  (ms) 

Economics 32 2.14 0.986 0.588 

Accelerator 32 0.866 0.502 0.662 

Cantilever 32 0.780 0.452 0.592 

Epidemiology 32 0.779 0.571 0.575 

Protein 32 1.57 0.667 1.13 

Spheres 32 1.41 0.690 0.927 

Ship 32 2.40 1.09 1.79 

Wind Tunnel 32 7.00 1.35 1.93 

Circuit 32 9.26 0.596 0.697 

Harbor 32 1.66 0.732 0.707 

Table 7. Execution times (in milliseconds) for matrices of Williams multi-core benchmarking [20]  in a GTX 590 GPU 

using the block size that produces the best result for each matrix 

Matrix Block size GPU 

TpR ELL standard (ms) TpR ELL-r (ms) TpR ELL-r  Sorted (ms) 

Economics 256 0,669 0.415 0.598 

Accelerator 256 0.407 0.346 0.655 

Cantilever 512 0.257 0.224 0.507 

Epidemiology 256 0.241 0.234 0.238 

Protein 512 0.626 0.391 1.18 

Spheres 128 0.533 0.348 0.792 

Ship 512 0.732 0.534 1.92 

Wind Tunnel 512 1.79 0.701 1.77 

Circuit 128 2.90 0.428 0.635 

Harbor 128 0.595 0.369 0.581 

Table 8. Execution times (in milliseconds) for matrices of Williams multi-core benchmarking [20] in a GTX 590 GPU 

when sequentially accessing the vector X,  for the block size that produces the best result for each matrix. 

Matrix Block size with the best 

result 

GPU 

TpR,  ELL-r (ms)  (1) TpR ELL-r Sorted (ms) (2) Ratio (2) / (1) 

Economics 256  0.243 0.099 40.7% 

Accelerator 256 0.111 0.082 73.9% 

Cantilever 256 0.126 0.110 87.3% 

Epidemiology 256 0.152 0.151 99.3% 

Protein 256 0.210 0.171 81.4% 

Spheres 256 0.186 0.168 90.3% 

Ship 256 0.293 0.220 75.1% 

Wind Tunnel 256 0.417 0.367 88.0% 

Circuit 256 0.271 0.251 92.6% 

Harbor 256 0.210 0.160 76.2% 

 

We can conclude that for the new GPU architectures, with 

high processing power sorting the rows by its length has 

no advantage regarding time performance purposes. We 

should note that GTX 590 card is now a mid range GPU. 

The gain in sorting the rows by its length is surpassed by 

the loss in accessing the values of vector X by the new 

order. To take advantage in ordering the rows we need to 

search by an algorithm where the gain in computation 

surpass the lost in accessing the vector X. 
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VI. DISCUSSION 

In this work we have explored the impact of sorting the 

rows of the sparse matrix (A) by their length when 

computing the SpMV product (A×X) in GPU for matrices 

in ELL-r and CSR formats using the TpR algorithm. The 

results were compared with the execution times obtained 

with the WpR algorithm with the CSR format. 

To assess the impact on performance of row sorting, two 

sets of matrices were used. The first set is randomly 

generated (synthetic matrices) and the second set is 

formed by the benchmarking matrices proposed in [20]. 

The rows of each matrix were pre-processed in CPU, 

using the quick sort algorithm (C/C++ qsort function) in 

such a way that they become stored in memory by order of 

increasing length. To guarantee the result consistency we 

have created an additional array with the original row’s 

positions. 

The first part of the work was comparing the two 

algorithms that have shown to have better results in 

previous studies [2], [17] the TpR and the WpR 

algorithms when using synthetic matrices and a Nvidia 

GTX 295 GPU. The TpR algorithm was studied for the 

storage formats CSR and ELL-r with and without sorting 

the matrix rows. The execution times of these cases were 

compared with the WpR algorithm to the CSR format. 

Although sorting the rows is not applicable to the WpR 

algorithm it was also studied to compare the execution 

times and understand in what situations this algorithm is 

faster than the TpR algorithm. 

Initially, synthetic matrices with 10% of nonzero float 

elements were used. However, for many real applications 

the sparse matrices present a percentage of nonzero 

elements much lower than 10%. Furthermore, in [2] is 

shown that for matrices where most of the rows contain a 

number of nonzero elements greater than the warp size, 

the algorithm of WpR to the CSR format, has the best 

results. Therefore the study continues by comparing the 

behaviour of the same algorithms firstly when decreasing 

the percentage of nonzero elements secondly when 

varying the percentage of rows with length smaller than 

the warp size (32). Now, in both situations we used just 

the ELL-r format to study the impact of row sorting and 

compare the results with the WpR + CSR algorithm. That 

decision was made because the TpR algorithm for the 

CSR format has shown worse performance than for the 

ELL-r format. More than that, it was concluded that the 

impact of row sorting in the CSR format is significantly 

smaller than in the ELL-r format. 

In the second part of this study, we tested the approach of 

sorting the rows with most of the matrices used in [2,17]. 

For these benchmarking matrices we used two GPU’s: a 

second generation Nvidia GPU, the GeForce GTX 295 

and the GeForce GTX 590 based on Fermi, a more 

advanced Nvidia GPU architecture. To be able to 

compare with the execution times obtained with these 

matrices in previous works we have also used the TpR 

algorithm for the standard ELL format. We have adapted 

the kernels from [2]. Another variant studied was the use 

of the texture memory. Besides the case of storing the 

matrix and the vector in global memory as was done for 

synthetic matrices, for benchmarking matrices we also 

test the use of the texture memory to store the vector X. 

Using the texture memory improves the performance but 

does not change the trend of the results.  

From this last study with benchmarking matrices we have 

concluded that, when using the GTX 295 reordering the 

rows is worthwhile to less than one third of the tested 

matrices and even that small advantage disappears when 

using a more advanced GPU such as the GTX 590. For 

this last card we have also measured the performance gain 

with sorting, independently of the cost in accessing the 

vector X. The results, from accessing sequentially the 

initial positions of X, show that sorting the rows is always 

advantageous. Thus to be able to a-priori decide if row 

sorting is worthwhile we also need to measure the lost of 

locality when accessing the values of X. 

VII. CONCLUSION 

We have studied the impact of sorting the matrix rows on 

the performance of the SpMV product for two storage 

formats, CSR and ELL-r, and we have compared the 

behaviour of different algorithms when varying the sparse 

structure of the matrices. 

For matrices where the percentage of rows with length 

greater than the warp size is high, the best algorithm is the 

“one warp per row” to the CSR format, and in that case, 

sorting the rows is useless. Otherwise, for matrices with a 

high percentage of small rows, the algorithm of “one 

thread per row” with the ELL-r format is the best. In that 

case we have shown that for synthetic matrices with high 

row length variability, sorting the matrix rows by their 

length is advantageous. However, the study of a set of 

benchmarking matrices representing real-world 

applications has shown that when using the second 

generation Nvidia GTX 295 GPU just for less than a third 

of the matrices sorting the rows is advantageous.  

Moreover, when using a more recent GPU architecture, 

the GTX 590 from Nvidia, the best performance is 

obtained without sorting the rows. Thus we can conclude 

that using current GPU’s, for the studied matrices, the 

advantage obtained through sorting the rows by its length 

is overcome by the loss in performance caused by the 

additional time needed to access the input vector. 

Although the rows of a warp may have almost the same 

number of nonzero entries after row sorting, their 

positions in each row can be quite distant. In spite of 

sorting the rows can be useful for the purpose of saving 

memory it should be taken into account that sorting the 

rows by their length brings some penalization in most of 
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the cases. 

As future work we will explore other approaches, namely 

based on metaheuristics, to find the best ordering that 

maximizes the load balancing in the scheduled warps and 

simultaneously minimizes the cost of memory accesses. 
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