
International Journal on Advanced Electrical and Computer Engineering (IJAECE)

__

ISSN(Online): 2349-9338, ISSN(Print): 2349-932X Volume -1, Issue -2, 2014

1

Impact of Row Sorting on the Sparse Matrix-Vector Product on GPU

1
Paula Prata,

2
João Muranho,

3
Abel Gomes

2
University of Beira Interior, Department of Informatics, Portugal1,

1,3
Instituto de Telecomunicações (IT), Portugal2

Email:
1
pprata@di.ubi.pt,

2
muranho@di.ubi.pt,

3
agomes@di.ubi.pt

Abstract— Modern graphics processing units (GPUs) allow

for a high throughput in processing a massive amount of

floating-point operations. The sparse matrix-vector (SpMV)

product is of particular interest, and subject to intensive

research in the GPGPU (general-purpose GPU)

computation community, because it is repeatedly used in

numerous scientific and engineering applications such as,

for example, circuits simulation and ground-water model

simulation among others.

Bearing this in mind, we have studied the impact of the

sorting of matrix rows, according to their length (that is, by

the number of nonzero values), on the GPU performance in

the computing of the SpMV product, using synthetic

matrices and benchmark matrices of different dimensions.

Although sorting the rows is a commonly used technique in

matrix operations, our study shows that sorting the rows by

their length is useless regarding time performance gains in

current GPU architectures.

Index Terms— CUDA, data parallelism, general purpose

GPU, sparse matrix-vector product.

I. INTRODUCTION

This article describes a study about the impact of

reordering the rows of a sparse matrix on the performance

of the sparse matrix-vector (SpMV) product operation

using Nvidia graphics processing units (GPUs). Albeit the

SpMV product is a very simple operation, we have to be

aware that it is a critical operation to the overall

performance of a number of applications in science and

engineering [11,16] because it is executed thousands or

even millions of times, as happens in iterative methods for

solving sparse linear systems [14].

GPUs are especially useful to carry out numerically

intensive computations with data parallelism, where

analogous calculations are performed on large quantities

of data that are regularly organized (for example, vectors

and matrices). Several studies show that GPUs can deliver

a very high performance in computations involving dense

matrices [1,19]. However, unlike dense matrices, the

sparse matrices have not a regular structure, what does

affect the performance of the solver of sparse matrix

linear systems. But, as the practice shows, the

performance of a solver of this kind also depends on

further three important cornerstones:

- matrix storage formats;

- SpMV product algorithms;

- reordering algorithms.

Note that the focus of this paper is on the impact of row

reordering on the overall performance of sparse

matrix-vector (SpMV) product algorithms using different

storage formats. More specifically, our work studies the

impact of reordering the matrix rows on the SpMV

product operation, using the length of each row as a

reordering criterion. The idea behind this procedure of

reordering is to get a better load balancing across the

threads of each scheduling unit, even if that is obtained at

the expense of some loss of locality of the rows and this is

the main contribution of this paper.

In this paper we start by briefly describing the parallel

computing architecture of GPU/CUDA in Section II.

Afterwards, we proceed to Section III, where the storage

formats for sparse matrices are also briefly described. The

SpMV algorithms are approached in Section IV. Next, in

Section V, we present the experimental results obtained in

studying the impact of sorting the matrix rows on the

performance of the SpMV product. Section VI discusses

those results obtained in testing. Finally, in Section VII

we present the conclusions and some hints for future

work.

II. GPU/CUDA PARALLEL COMPUTING

ARCHITECTURE

A. Nvidia GPU Architecture

An Nvidia GPU is an array of a number of multithreaded

streaming multiprocessors with a global memory space.

Each multiprocessor consists of a set of scalar processor

cores (each with a set of registers) communicating via

shared memory [21]. These many-core processors are

capable of very high throughput computations, but they

do not possess large caches that allow for memory access

optimisation. To hide the high latency in global memory

access, and take advantage of GPU processing power, it is

necessary to running thousands of threads. It is also

necessary to distribute the workload over the threads of

warps (i.e., scheduling units in CUDA) in a balanced

manner. Each warp only terminates when all its threads

got concluded.

International Journal on Advanced Electrical and Computer Engineering (IJAECE)

__

ISSN(Online): 2349-9338, ISSN(Print): 2349-932X Volume -1, Issue -2, 2014

2

B. CUDA Parallel Computing Model

The Compute Unified Device Architecture (CUDA) was

designed to take advantage of the many-core processors

of Nvidia GPUs [12]. Basically, a CUDA application

consists of a process running on host side (CPU) that

launches functions (kernels) on device side (GPU). Each

kernel running on GPU side is simultaneously executed

by a high number of threads. The threads are organized in

blocks, and the set of blocks constitutes an execution grid.

We can say that one thread is associated to one scalar

processor core, a block of threads is associated to one

multiprocessor, and a grid of blocks is mapped onto the

GPU (see Figure 1). Once a block of threads is assigned to

a multiprocessor, it becomes responsible by splitting them

into warps that get scheduled across several cores.

Threads that belong to the same block may exchange and

share data via the multiprocessor shared memory. Blocks

waiting to be processed are automatically launched as

soon as one of the multiprocessors becomes available.

Fig. 1 Association between the structure of the software and the architecture of the hardware (adapted from [12])

Global memory can be accessed by any thread in the

program, but has high access latency. Beyond global

memory, the GPU has two additional (read-only)

memories, texture memory and constant memory.

Whenever an element is stored in the texture cache, it

passes to be accessed in texture memory, which is far

faster than global memory, in subsequent requests.

It is clear that, before launching a kernel on GPU side, the

data must be copied into the global memory of GPU.

Terminated the execution of the kernel, the output results

must be copied back to CPU memory.

III. SPARSE MATRIX STORAGE

FORMATS

A sparse matrix is usually stored in a compact format in

order to just keep the nonzero values and its indexed

location. The most common matrix storage formats in

GPU-based sparse linear systems are the following:

- the coordinate format, also known as COO format [14].

- the compressed sparse row (CSR) format [14];

- the ELL format and its variants [7].

For a visual representation of these storage formats, the

reader is referred to [2], [17].

A. The COO Format

 The COO format is the reference storage format for

sparse matrices. Let N be the number of nonzero elements

of the sparse matrix A. In the COO format, the matrix A

translates itself into three vectors (or one-dimensional

arrays) of size N: the row indexing vector, where the row

indices of the nonzero elements are stored; the column

indexing vector, where the column indices of the nonzero

elements are stored; the data vector that stores the nonzero

elements themselves.

This format is used to initially store all the matrices

studied in this work. Usually the matrices are converted to

compressed formats which can lead to no negligible

savings in storages [14]. The COO format implies a

number of GPU global memory accesses larger than the

use of compressed formats which results in a performance

penalization.

B. The CSR Format

The CSR format extends the COO format. The main

difference between these two formats is that the

row-indexing array of COO format is replaced by a

shorter array in the CSR format. The i-th component of

this array contains the number of nonzero elements of the

0- to i-th rows of the sparse matrix. Therefore, this shorter

array is an array of row offsets, as needed to index the

International Journal on Advanced Electrical and Computer Engineering (IJAECE)

__

ISSN(Online): 2349-9338, ISSN(Print): 2349-932X Volume -1, Issue -2, 2014

3

elements of the second and third arrays, say the column

indexing array and the data array, respectively.

C. The ELL, HYB and ELL-r Formats

The ELLPACK/ITPACK or ELL format uses two vectors,

one for the nonzero values and another for the column

indices. Supposing a matrix with M rows where K is the

maximum number of nonzero elements per row, the

nonzero values are stored by columns assuming that each

row has length K. In rows with a number of nonzero

elements less than K the final positions will be

zero-padded to length K. Then, the first M elements of the

data vector will be the first nonzero element of the first

row, the first nonzero element of the second row and so on

until the first nonzero element of the M
th

 row. The second

vector, the column indices vector, corresponds to a

M-by-K matrix stored in column major order, where each

position contains the column of the value that is at the

corresponding position of the data vector.

For matrices where the length of the rows has high

variability, the percentage of zeros in the data vector is

high and the performance decreases. For those cases, the

hybrid format (HYB) proposed in [2] combines ELL and

COO formats. When a matrix has a certain number of

rows with length greater than an empirical threshold, the

typical number of nonzero values is stored in the ELL

format and the remaining entries of larger rows are stored

in the COO format.

Finally, the ELLPACK-r (ELL-r) format optimises the

ELL format by using a third vector to store the number of

nonzeros of each row [17], [18].

IV. SPARSE MATRIX-VECTOR PRODUCT

ON GPU

Now, let us see how the SpMV operation can be

implemented on GPU. In fact, a number of sparse

matrix-vector product algorithms can be classified in the

basis of the dichotomy between the number of threads and

the structuring element of the matrix as follows:

- 1 thread per nonzero matrix element (TpE algorithm);

- 1 thread per matrix row (TpR algorithm);

- 1 warp (actually, 32 threads) per matrix row (WpR

algorithm).

Moreover, according to the work presented in [2], the

results produced by combining those three storage matrix

formats and those three SpMV product algorithms suggest

that the best performance of the SpMV product is attained

in two circumstances:

- using TpR algorithm together with the ELL format.

- using WpR algorithm together with the CSR format;

The WpR algorithm is the most efficient algorithm only

when the length of the rows is long enough to feed the

entire warp of threads. With the WpR algorithm each

matrix row is processed by one warp, thus sorting rows is

useless.

A. Thread per Row Algorithm Using the ELL Format

Before proceeding any further with the TpR algorithm to

carry out the SpMV product within the ELL format, we

need more context about the ELL format itself.

Indeed, a previous study presented in [2], [3] shows that

the CUDA implementation of the SpMV product

produces the best performance using the ELL storage

format, provided that the maximum number of nonzero

elements per row does not substantially differ from the

average. This format allows that the matrix data to be

processed by one warp is stored in contiguous memory

positions and, therefore, the memory access times can be

shortened. If the matrix rows handled by each warp have

approximately the same length (that is, the same number

of nonzero elements) then all threads will be

simultaneously occupied without wasting of computing

capacity. But, if the number of nonzero elements per row

varies significantly, those authors propose the hybrid

format (HYB) described in Section III. C.

Recently, some proposals on automatically tuning the

SpMV operations on GPU have appeared in the literature

[5], [6], [10]. In [10], a new modified version of ELL, the

sliced ELL format is proposed. In this format, the matrix

is divided into slices, that is, in strips of a number of

adjacent rows, being each slice separately stored in the

ELL format. A variable number of threads can be

assigned to each slice of matrix rows. In [5] another

modification to ELL, the blocked ELL (BELLPACK), is

proposed. The matrix is divided into small dense blocks

that were stored contiguously. In that way, we can reduce

the amount of storage needed for matrices having a block

structure. In an analogous manner to the sliced ELL

format, the matrix in the blocked ELL format is also

divided into slices. In both cases, the slicing process is

combined with a row reordering process in order to bring

together rows of similar length, as well as to reduce

storage. But, as referred in [10], reordering rows may

result in degrading the performance. Adjacent rows

usually have closer nonzero elements than unrelated rows,

so that the shuffling of rows can increase the number of

cache misses on accesses to vector to be multiplied by the

sparse matrix.

Some works on integer sparse-matrix product in GPUs

also propose reordering the rows by their length before

building sliced formats [15] and blocked formats [4].

Finally, row sorting is also used in [9], having these

authors proposed a new storage format with the intent of

reducing the memory footprint of the ELL format.

On the other hand, performing the SpMV product on GPU

using the TpR (one thread per row) algorithm on a

International Journal on Advanced Electrical and Computer Engineering (IJAECE)

__

ISSN(Online): 2349-9338, ISSN(Print): 2349-932X Volume -1, Issue -2, 2014

4

ELL-format matrix makes the threads that belong to the

same warp to access contiguous memory positions at each

iteration. When the thread i processes the row i, it

accesses the j-th component of the row i in the j-th

iteration. As the matrix is stored in the column major

order, all these elements are stored in consecutive

memory positions. In the same warp, a single instruction

is executed at a time across all its threads, following a

Single Instruction Multiple Thread (SIMT) model. Thus,

we have all threads in the warp accessing contiguous

memory positions. This pattern of memory access, known

in CUDA as “coalesced memory access”, is that one that

allows for the best performance [8].

If the matrices have rows with quite a variable number of

nonzero elements, the same warp can process rows with

very different lengths. In other words, we have threads

with little work and threads with a lot of work. According

to the SIMT execution model, the warp just finishes when

all the threads have terminated. Therefore, we can expect

that sorting the rows by their length leads to a more

balanced work on GPU, resulting from it a possibly better

performance. In the ELL-r format, the use of a vector with

a number of nonzero elements per row, as referred before,

allows stopping the computation when a thread has not

more elements to process, without changing the memory

access pattern (even if one or more threads do not access

the memory, the scheme of contiguous access is not

broken).

B. Warp per Row and Thread per Row Algorithms Using

the CSR Format

With the CSR format, a good performance can be

obtained using the WpR (warp per row) algorithm, where

all warp threads process the same matrix row using a

parallel reducing algorithm [2]. In this case, the execution

model in the several multiprocessors of a GPU is SPMD

(single program multiple data), which means that a new

warp is launched when the execution of a warp terminates,

and this is so regardless of what happens in other

multiprocessors. Concerning the memory access, the

WpR algorithm is more efficient than the TpR algorithm,

because it accesses data and indices contiguously (data is

stored in row major order and all threads access elements

from the same row). This does not happen in the TpR

algorithm with the CSR format because the contiguous

elements are not accessed simultaneously by all threads.

The main drawback of the WpR algorithm is that it needs

to have enough work for each warp, which requires that

the matrix rows have a number of nonzero elements

greater than the warp size (32). Then, as all the threads of

a given warp are processing the elements of the same row,

sorting the rows ends up having no impact on

performance. In the case of the TpR algorithm with the

CSR format, when the matrix has a highly variable

number of nonzero values per row, each warp just finishes

when the longest row finishes, and thus as with ELL

format sorting the rows may improve performance.

V. TESTING RESULTS

A. Experimental Testbed

The host machine used in this work was an Intel Core 2

Quad Q9550 at 2.83 GHz with 4 GB of RAM and running

the operating system Microsoft Windows XP Professional

64-bits. We also used two graphics cards, the Nvidia

GeForce GTX 295 and the GeForce GTX 590

programmed with CUDA.

The GeForce GTX 295 (base on the GT200 architecture)

used with synthetic matrices, has 30 multiprocessors, each

one with 8 cores (at 1.24 GHz). This GPU has 1GB of

global memory and a “compute capability” of 1.3.

The GeForce GTX 590, used in the last experiments of

our work, is equipped with a two full size GF110 Fermi

GPU’s. Each GPU has 16 multiprocessors, each one with

32 cores (at 1,214 GHz), 1.6 GB of global memory and a

“compute capability” of 2.0.

This GPU based on Fermi architecture has a new memory

hierarchy in which it is possible to configure different

cache levels; unlike previous architectures different

kernels can execute concurrently; a new dual warp

scheduler is introduced; now each multiprocessor has two

warp schedulers and two instruction dispatch units,

allowing two warps to be issued and executed

concurrently [13].

B. Thread per Row versus Warp per Row Algorithms on

Synthetic Matrices

We used real-valued square matrices to evaluate the

performance of the SpMV product. For that purpose, we

randomly generated single precision sparse matrices of

order 4096, 8192 and 16384. More specifically, about 1%

to 20% of nonzero elements were generated for each

matrix row. Also, the column index of each nonzero value

was obtained randomly. Doing so, each matrix ended up

having about 10% of nonzero values. However, randomly

generated matrices have a high variability in respect to

row length, assuming here that the length of a row is the

number of its nonzero elements. Complete results of these

experiments can be seen in [22]. With respect to the TpR

algorithm, we compared the kernel execution times for

both formats, with and without sorting of rows,

considering three block sizes: 32 (1 warp), 64 and 128

threads. We have concluded that row sorting in the CSR

format can give a small advantage (about 12% in the best

case of having the smaller matrix order and the block size

of 128).

For the ELL format, we used the ELL-r version and the

results are much better than for CSR format. For the

studied matrices, the gain obtained with row sorting can

International Journal on Advanced Electrical and Computer Engineering (IJAECE)

__

ISSN(Online): 2349-9338, ISSN(Print): 2349-932X Volume -1, Issue -2, 2014

5

be about 30% (to the matrix of order 16384 and a block

size of 32). Increasing the block size causes in some cases

a very slight increase in the performance, but because this

is not a general rule the following experiments were

carried out using a block size of 32.

Table 1 shows the five testing setups involving CSR and

ELL-r formats, with and without row sorting. The first

four setups made usage of the TpR algorithm, while the

last setup used the WpR algorithm. As the results show,

this last setup consisting of the CSR format plus WpR

algorithm surpasses the other setups in terms of timing

performance.

Considering that in many applications the matrices have

higher percentages of rows with small length, we

generated matrices with the same structure as before, but

decreasing the percentage of nonzero values. The results

of the SpMV product for the matrix with order of 16384,

using a block size of 32, are shown in Table 2. The

execution times obtained in CPU are also presented as a

baseline that allows getting an insight of the advantage of

using the GPU. The CSR format is here considered

because it is much faster than the ELL format in CPU.

As can be seen, when decreasing the percentage of

nonzero values, the “ELL-r sorted” plus TpR surpasses

the WpR algorithm in performance when such a

percentage goes down to 2%. The column

GPUsor/GPU*100 indicates the percentage of the

execution time of the product with row sorting in relation

to the execution time of the same operation without row

sorting.

Table 1. Best execution times (in milliseconds) and the corresponding block sizes for each GPU case studied applied to

synthetic matrices with 10% of nonzero values
Matrix

order

GPU, CSR (Thread per Row) GPU, ELL-r (Thread per Row) GPU, CSR

 row sorted row sorted Warp per Row

time (ms) block size time block size time (ms) block size time (ms) block

size

time (ms) block

size

4096 4.24 32 3.72 128 1.40 32 1.23 32 0.83 32

8192 20.22 128 18.80 64 4.64 64 3.89 64 2.98 32

16384 93.37 128 88.14 128 17.55 128 14.11 32 11.45 32

Table 2. Execution times (in milliseconds) when decreasing the percentage of nonzero values (synthetic matrix of order

16384, block size = 32)

% of

Nonzero

CPU

CSR (ms)

GPU, ELL-r, Thread per Row GPU, CSR

WpR (ms)

Maximum

row length Without row sorting (ms) With row sorting (ms) GPUsor/GPU*100

5% 45.48 9.77 7.11 72.8% 6.77 1638

2% 18.50 3.98 2.90 72.9% 3.06 655

1% 9.39 2.07 1.58 76.3% 1.67 327

0.1% 1.23 0.32 0.27 90.0% 0.47 32

Table 3. Execution times (in milliseconds) when increasing the percentage of rows with length <= 32 (synthetic matrix of

order = 16384, block size = 32)

% of row length

<= 32

% of nonzero

elements

CPU GPU

CSR (ms) ELL-r TpR (ms) ELL_R sorted TpR (ms) CSR WpR (ms)

10% 4.5% 42.03 9.22 6.46 6.35

30% 3.6% 32.74 8.32 5.25 5.22

50% 2.6% 23.35 7.30 3.40 4.31

70% 1.6% 14.64 6.21 2.74 3.63

90% 0.6% 5.77 5.09 1.94 3.11

100% 0.1% 1.25 0.32 0.29 0.66

Sorting the rows is less advantageous when the percentage

of nonzero elements and the maximum row length

decreases, but the results point to that for matrices with a

small percentage of nonzero values the best algorithm is

the “one thread per row” for the ELL-r format with row

sorting.

Furthermore, we studied what happens when increasing

the percentage of rows with length smaller than the warp

size. Table 3 shows the results for the matrix of order

16384, where a percentage of rows have a random length

smaller than the warp size (32) and the others have a

length between 32 and 10% of the matrix order. Again, we

considered a block size of 32, and the execution times are

in milliseconds. As can be seen, when the percentage of

rows with length smaller than 32 reaches the 70%, the

ELL-r TpR algorithm with sorting surpasses the WpR

algorithm in performance. Again, when the percentage of

nonzero values is below the 2%, the ELL-r TpR algorithm

with sorting becomes faster than the WpR algorithm.

In summary, we conclude that when the percentage of

nonzero values decreases, the ELL-r TpR algorithm with

sorting performs better than the CSR WpR. The same

happens when the percentage of rows with length smaller

than 32 increases.

International Journal on Advanced Electrical and Computer Engineering (IJAECE)

__

ISSN(Online): 2349-9338, ISSN(Print): 2349-932X Volume -1, Issue -2, 2014

6

C. Benchmarking Matrices using the GTX 295 GPU

We have also studied the impact of sorting the rows for

the matrices used in the studies [2], [3], [17], [18] which

were originally used in the multi-core benchmarking

study of Williams et al. [20]. From this benchmark we did

not consider four matrices: “dense”, “QCD”, “webbase”

and “LP”. In the first two matrices all the rows have the

same length, thus sorting the rows is not applicable. With

the last two matrices we had memory restrictions to

implement the ELL format without partitioning the

matrix. When studying all the remaining 10 matrices, we

also used a block of 32 threads and the average execution

times (in milliseconds) presented in Table 4 were

obtained with 500 runs of each kernel in the same GPU as

in the previous experiments, the GTX 295.

In this table we can compare the CPU execution times

(CSR format) with the GPU execution times obtained

using six setups. The first four GPU setups use global

memory on GPU side, while the last two use GPU texture

memory to access the vector X. Besides, the first three and

the last two setups make usage of the ELL formats

together with the TpR algorithm to accomplish, while the

fourth setup tries to take advantage of the CSR format and

of the WpR algorithm. As can be seen, row sorting only

has advantage in three cases (Economics, Circuit and

Harbor). For the other matrices, the execution time after

sorting the rows is worse than before.

To better understand the results we have analysed the

longest row of each warp before and after sorting the

rows. We will call LRW (longest row of the warp) to the

size of the longest row processed by the warp. Especially

in the Economics and Circuit matrices after sorting, the

number of warps with a small LRW grows significantly

(decreasing the number of warps with big LRW). This

happens in the matrices with high row length variability

inside each warp. After sorting, small rows were not

mixed with big rows. Figure 2 shows a graph with the

number of nonzero elements per row to the Circuit matrix,

which is the one that presents the biggest advantage when

sorting the rows. As can be observed in the Circuit matrix,

there is high variability of row lengths. Figure 3 shows the

graph for the Wind Tunnel matrix. Here the variability of

row lengths is clearly smaller.

Fig. 2. Graph with the number of nonzero elements per row for the Circuit matrix.

Fig. 3. Graph with the number of nonzero elements per row for the Wind Tunnel matrix.

Studying the memory accesses, we have verified that the

difference in the execution times are mainly due to the

access to the vector X. Table 5 shows the following for

each matrix: characteristics of the matrix (the number of

nonzero elements – nnz, the percentage of nonzero

elements and the average number of nonzero elements per

row); the time (in milliseconds) spent in sorting the rows

(via the qsort C/C++ function); the performance in

GFLOPS for the TpR algorithm when using the formats

ELL-r and for ELL-r sorted when using the texture

memory. It was calculated by 2*(number of nonzero

values)/time required for one SpMV product. Concerning

International Journal on Advanced Electrical and Computer Engineering (IJAECE)

__

ISSN(Online): 2349-9338, ISSN(Print): 2349-932X Volume -1, Issue -2, 2014

7

the time needed to sort, it should be noted that usually real

applications involve a great number of iterations with the

rows being sorted just once in the beginning of the

process. The last columns of Table 5 present the average

of the LRWs before and after sorting. The last column is

the percentage ratio of the average of the LRWs after

sorting to the average before sorting. As can be seen, we

get an advantage in sorting when that ratio is 66% or less.

Computing this ratio for previous synthetic matrices, with

10% of nonzero elements, we get a value of 52.2%.

Analysing the LRWs before and after sorting, the results

point to that with this GPU (GTX 295) we have advantage

in sorting rows when the average of the LRWs decreases

to about 66% or less in relation to the value before sorting.

Table 4. Execution times (in milliseconds) for matrices of Williams multi-core benchmarking [20] with a bock size of 32

running in a GTX 295
Matrix Order CPU GPU GPU texture

CSR

(ms)

TpR ELL

std (ms)

TpR ELL-r

(ms)

TpR ELL-r

sorted (ms)

WpR CSR

(ms)

TpR ELL-r

(ms)

TpR ELL-r sorted

(ms)

Economics 206500 5.24 2.10 1.60 0.945 3.81 1.21 0.708

Accelerator 121192 5.27 0.825 0.665 0.830 2.25 0.504 0.685

Cantilever 62451 7.10 0.867 0.751 0.976 1.35 0.588 0.622

Epidemiology 525825 7.02 0.776 0.745 0.753 7.54 0.685 0.687

Protein 36417 7.76 1.658 1.08 1.36 1.26 0.787 0.857

Spheres 83334 10.12 1.41 1.02 1.45 1.98 0.827 0.915

Ship 140874 14.35 2.26 1.54 2.84 2.87 1.23 2.13

Wind Tunnel 217918 20.60 6.56 2.01 3.56 4.27 1.55 2.14

Circuit 170998 4.619 9.90 2.11 0.919 3.07 1.78 0.793

Harbor 46835 4.578 1.69 1.27 1.03 1.41 0.811 0.614

Table 5. Features, sorting time, GFLOPS and average of warp lengths of Williams benchmarking matrices [20].
Matrix Nº of nonzero

elements

(nnz)

% of

nnz

Av. of

nnz

 per row

Sorting

Time

(ms)

GFlops

TpR ELL-r

(Texture)

GFlops

TpR ELL-r

Sorted (Texture)

Average of LRWs

Before

Sorting (1)

After

Sorting (2)

Ratio

(2) / (1)

Economics 1273389 0.003 6 12.2 2.1 3.6 22.4 6.18 27%

Accelerator 1362087 0.009 22 7.3 5.4 4.0 16.1 11.2 70%

Cantilever 2034917 0.050 65 3.9 6.9 6.5 37.6 32.6 87%

Epidemiology 2100225 0.0003 4 9.8 6.1 6.1 3.99 3.99 100%

Protein 2190591 0.165 119 3.6 5.6 5.1 90.3 60.3 67%

Spheres 3046907 0.044 72 5.0 7.4 6.7 42.2 36.6 87%

Ship 3977139 0.015 28 10.5 6.5 3.7 40.0 28.3 71%

Wind Tunnel 5926171 0.012 53 5.3 7.6 5.5 31.0 27.2 88%

Circuit 958936 0.003 6 9.0 1.1 2.4 14.1 5.66 40%

Harbor 2374001 0.110 50 3.5 5.8 7.7 76.5 50.7 66%

D. Benchmarking Matrices using the GTX 590 GPU

Finally we run the same code on the Fermi GPU (the GTX

590) for the same benchmarking matrices using just the

global memory and the ELL format. The TpR algorithm is

applied to the ELL standard format and to ELL-R with

and without sorting. In Table 6 the execution time for

each matrix when using a block size of 32 is presented.

Comparing these results with the ones obtained with the

GTX 295 card (Table 4) it can be seen that sorting the

rows still having advantage for the matrices “Economics”

and “Harbor”, but now the difference to the case without

sorting is quite smaller. For all the other matrices sorting

the rows has no advantage.

For this card we also consider block sizes of 64, 128, 256

and 512. Table 7 presents just the best execution time

obtained for each matrix and the corresponding block

size. As can be seen, for all the studied matrices, the best

execution time of the SpMV product is obtained with the

ELL-R format without sorting.

In the Fermi architecture, each multiprocessor has 32

cores, a fourfold increase over the GT200 architecture,

and allows two warps to be executed concurrently. Then

considering blocks with just 32 threads in Fermi card is a

wasting of resources and justifies the similar results in

both GPUs when using a block of 32 threads. Increasing

the block size reduces significantly the execution time in

all the cases and sorting the rows in the benchmarking

matrices does not present any advantage. As referred

before the original positions of the rows present a better

memory access pattern in accessing the correspondent

vector values.

To measure the performance gain with sorting,

independently of the cost in accessing the vector X, we

changed the previous kernel in order to access

sequentially the vector X, instead of accessing the right

positions. With this new kernel that accesses the initial

positions of X, a wrong result vector is produced.

However it shows the net gain obtained when the work of

each warp is balanced across its threads.

Table 8 shows the execution times for Williams’s

benchmark in a GTX 590 GPU when using this kernel for

the TpR algorithm applied to ELL-R format with and

without sorting. We consider block sizes of 32, 64, 128,

256, 384 and 512. In all the matrices and for all the block

sizes, the best execution times when accessing

sequentially the vector X were obtained with the version

that sorts the matrix rows. Furthermore for all the

matrices, the best execution time is obtained with a block

International Journal on Advanced Electrical and Computer Engineering (IJAECE)

__

ISSN(Online): 2349-9338, ISSN(Print): 2349-932X Volume -1, Issue -2, 2014

8

size of 256. That value (that is, 8 times 32) could be

expected considering that this GPU, as was referred

before, has four more cores than the GTX 295 and

launches two warps at a time. In table 8, just the execution

times for this block size are presented; column three

presents the execution times before sorting and column

four the execution times after sorting. The last column of

table 8 presents the percentage ratio of the execution time

after sorting to the execution time before sorting. As can

be seen from Table 8, in all the cases it is advantageous to

sort the rows. The biggest advantage is for the Economics

matrix with a value of 59.3% (obtained from 100 minus

40.7) and for the Epidemiology matrix the advantage is

almost non-existent. In this last case, most of the matrix

rows have the same length.

Table 6. Execution times (in milliseconds) for matrices of Williams multi-core benchmarking [20] with a bock size of 32

running in a GTX 590 GPU

Matrix Block size GPU

TpR ELL standard (ms) TpR ELL-r (ms) TpR ELL-r Sorted (ms)

Economics 32 2.14 0.986 0.588

Accelerator 32 0.866 0.502 0.662

Cantilever 32 0.780 0.452 0.592

Epidemiology 32 0.779 0.571 0.575

Protein 32 1.57 0.667 1.13

Spheres 32 1.41 0.690 0.927

Ship 32 2.40 1.09 1.79

Wind Tunnel 32 7.00 1.35 1.93

Circuit 32 9.26 0.596 0.697

Harbor 32 1.66 0.732 0.707

Table 7. Execution times (in milliseconds) for matrices of Williams multi-core benchmarking [20] in a GTX 590 GPU

using the block size that produces the best result for each matrix

Matrix Block size GPU

TpR ELL standard (ms) TpR ELL-r (ms) TpR ELL-r Sorted (ms)

Economics 256 0,669 0.415 0.598

Accelerator 256 0.407 0.346 0.655

Cantilever 512 0.257 0.224 0.507

Epidemiology 256 0.241 0.234 0.238

Protein 512 0.626 0.391 1.18

Spheres 128 0.533 0.348 0.792

Ship 512 0.732 0.534 1.92

Wind Tunnel 512 1.79 0.701 1.77

Circuit 128 2.90 0.428 0.635

Harbor 128 0.595 0.369 0.581

Table 8. Execution times (in milliseconds) for matrices of Williams multi-core benchmarking [20] in a GTX 590 GPU

when sequentially accessing the vector X, for the block size that produces the best result for each matrix.

Matrix Block size with the best

result

GPU

TpR, ELL-r (ms) (1) TpR ELL-r Sorted (ms) (2) Ratio (2) / (1)

Economics 256 0.243 0.099 40.7%

Accelerator 256 0.111 0.082 73.9%

Cantilever 256 0.126 0.110 87.3%

Epidemiology 256 0.152 0.151 99.3%

Protein 256 0.210 0.171 81.4%

Spheres 256 0.186 0.168 90.3%

Ship 256 0.293 0.220 75.1%

Wind Tunnel 256 0.417 0.367 88.0%

Circuit 256 0.271 0.251 92.6%

Harbor 256 0.210 0.160 76.2%

We can conclude that for the new GPU architectures, with

high processing power sorting the rows by its length has

no advantage regarding time performance purposes. We

should note that GTX 590 card is now a mid range GPU.

The gain in sorting the rows by its length is surpassed by

the loss in accessing the values of vector X by the new

order. To take advantage in ordering the rows we need to

search by an algorithm where the gain in computation

surpass the lost in accessing the vector X.

International Journal on Advanced Electrical and Computer Engineering (IJAECE)

__

ISSN(Online): 2349-9338, ISSN(Print): 2349-932X Volume -1, Issue -2, 2014

9

VI. DISCUSSION

In this work we have explored the impact of sorting the

rows of the sparse matrix (A) by their length when

computing the SpMV product (A×X) in GPU for matrices

in ELL-r and CSR formats using the TpR algorithm. The

results were compared with the execution times obtained

with the WpR algorithm with the CSR format.

To assess the impact on performance of row sorting, two

sets of matrices were used. The first set is randomly

generated (synthetic matrices) and the second set is

formed by the benchmarking matrices proposed in [20].

The rows of each matrix were pre-processed in CPU,

using the quick sort algorithm (C/C++ qsort function) in

such a way that they become stored in memory by order of

increasing length. To guarantee the result consistency we

have created an additional array with the original row’s

positions.

The first part of the work was comparing the two

algorithms that have shown to have better results in

previous studies [2], [17] the TpR and the WpR

algorithms when using synthetic matrices and a Nvidia

GTX 295 GPU. The TpR algorithm was studied for the

storage formats CSR and ELL-r with and without sorting

the matrix rows. The execution times of these cases were

compared with the WpR algorithm to the CSR format.

Although sorting the rows is not applicable to the WpR

algorithm it was also studied to compare the execution

times and understand in what situations this algorithm is

faster than the TpR algorithm.

Initially, synthetic matrices with 10% of nonzero float

elements were used. However, for many real applications

the sparse matrices present a percentage of nonzero

elements much lower than 10%. Furthermore, in [2] is

shown that for matrices where most of the rows contain a

number of nonzero elements greater than the warp size,

the algorithm of WpR to the CSR format, has the best

results. Therefore the study continues by comparing the

behaviour of the same algorithms firstly when decreasing

the percentage of nonzero elements secondly when

varying the percentage of rows with length smaller than

the warp size (32). Now, in both situations we used just

the ELL-r format to study the impact of row sorting and

compare the results with the WpR + CSR algorithm. That

decision was made because the TpR algorithm for the

CSR format has shown worse performance than for the

ELL-r format. More than that, it was concluded that the

impact of row sorting in the CSR format is significantly

smaller than in the ELL-r format.

In the second part of this study, we tested the approach of

sorting the rows with most of the matrices used in [2,17].

For these benchmarking matrices we used two GPU’s: a

second generation Nvidia GPU, the GeForce GTX 295

and the GeForce GTX 590 based on Fermi, a more

advanced Nvidia GPU architecture. To be able to

compare with the execution times obtained with these

matrices in previous works we have also used the TpR

algorithm for the standard ELL format. We have adapted

the kernels from [2]. Another variant studied was the use

of the texture memory. Besides the case of storing the

matrix and the vector in global memory as was done for

synthetic matrices, for benchmarking matrices we also

test the use of the texture memory to store the vector X.

Using the texture memory improves the performance but

does not change the trend of the results.

From this last study with benchmarking matrices we have

concluded that, when using the GTX 295 reordering the

rows is worthwhile to less than one third of the tested

matrices and even that small advantage disappears when

using a more advanced GPU such as the GTX 590. For

this last card we have also measured the performance gain

with sorting, independently of the cost in accessing the

vector X. The results, from accessing sequentially the

initial positions of X, show that sorting the rows is always

advantageous. Thus to be able to a-priori decide if row

sorting is worthwhile we also need to measure the lost of

locality when accessing the values of X.

VII. CONCLUSION

We have studied the impact of sorting the matrix rows on

the performance of the SpMV product for two storage

formats, CSR and ELL-r, and we have compared the

behaviour of different algorithms when varying the sparse

structure of the matrices.

For matrices where the percentage of rows with length

greater than the warp size is high, the best algorithm is the

“one warp per row” to the CSR format, and in that case,

sorting the rows is useless. Otherwise, for matrices with a

high percentage of small rows, the algorithm of “one

thread per row” with the ELL-r format is the best. In that

case we have shown that for synthetic matrices with high

row length variability, sorting the matrix rows by their

length is advantageous. However, the study of a set of

benchmarking matrices representing real-world

applications has shown that when using the second

generation Nvidia GTX 295 GPU just for less than a third

of the matrices sorting the rows is advantageous.

Moreover, when using a more recent GPU architecture,

the GTX 590 from Nvidia, the best performance is

obtained without sorting the rows. Thus we can conclude

that using current GPU’s, for the studied matrices, the

advantage obtained through sorting the rows by its length

is overcome by the loss in performance caused by the

additional time needed to access the input vector.

Although the rows of a warp may have almost the same

number of nonzero entries after row sorting, their

positions in each row can be quite distant. In spite of

sorting the rows can be useful for the purpose of saving

memory it should be taken into account that sorting the

rows by their length brings some penalization in most of

International Journal on Advanced Electrical and Computer Engineering (IJAECE)

__

ISSN(Online): 2349-9338, ISSN(Print): 2349-932X Volume -1, Issue -2, 2014

10

the cases.

As future work we will explore other approaches, namely

based on metaheuristics, to find the best ordering that

maximizes the load balancing in the scheduled warps and

simultaneously minimizes the cost of memory accesses.

REFERENCES

[1] S. Barrachina, M. Castillo, F.D. Igual, R. Mayo,

and H. S. Qintana-Ortí, “Solving dense linear

systems on graphics processors,” Lecture Notes in

Computing Science vol. 5168 (2008) pp 739-748.

[2] N. Bell, and M. Garland, “Implementing Sparse

Matrix-Vector Multiplication,” on

Throughput-Oriented Processors, Proc.

Supercomputing '09, 2009.

[3] N. Bell, and M. Garland, “Efficient Sparse

Matrix-Vector Multiplication on CUDA,”

Technical Report NVR-2008-004, NVIDIA

Corporation, Dec., 2008.

[4] B. Boyer, J. Dumas, and P. Giorgi, “Exact Sparse

Matrix-Vector Multiplication on GPU’s and

Multicore Architectures,” Proc. of the 4th Int’l

Workshop on Parallel and Symbolic Computation

(PASCO '10), Marc Moreno Maza and Jean-Louis

Roch (Eds.). ACM, New York, NY, USA, pp.

80-88, 2010. DOI=10.1145/1837210.1837224.

[5] J.W. Choi, A. Singh, and R.W. Vuduc,

“Model-driven autotuning of sparse matrix-vector

multiply on GPUs,” Proc. of the 15th ACM

SIGPLAN, Symp. on Principles and practice of

parallel programming (PPoPP '10), pp. 115-126,

2010.

[6] D. Grewe, and A. Lokhmotov, “Automatically

generating and tuning GPU code for sparse

matrix-vector multiplication from a high-level

representation,” Proc. of the Fourth Workshop on

General Purpose Processing on GPU, ACM,

Article 12, 8 pages, 2011.

[7] D.R. Kincaid, T.C. Oppe and D.M. Young,

“ITPACKV 2D User's Guide,” Report CNA-232,

University of Texas at Austin, Centre for

Numerical Analysis, May, 1989.

[8] D.B. Kirk, and W.W Hwu, “Programming

Massively Parallel Processors,” Morgan

Kaufmann, Elsevier, 2010.

[9] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A.

Basermann, and A.R. Bishop, “Sparse

matrix-vector multiplication on GPGPU clusters:

A new storage format and a scalable

implementation,” in CoRR, abs/1112.5588, 2011.

Available at: http://arxiv.org/abs/1112.5588.

[10] A. Monakov, A. Lokhmotov, and A. Avetisyan,

“Automatically Tuning Sparse Matrix-Vector

Multiplication for GPU Architectures”, Lecture

Notes in Computer Science, Vol. 5952(2010) pp.

111-125.

[11] R.L. Naff, and E.R. Banta, “The U.S. Geological

Survey modular ground-water model - PCGN: A

preconditioned conjugate gradient solver with

improved nonlinear control', in U.S.” Geological

Survey, Open-File Report 2008-1331, 2008.

Available at:

http://pubs.usgs.gov/of/2008/1331/pdf/OF08-133

1_508.pdf.

[12] NVIDIA Corporation, “NVIDIA CUDA

Programming guide,” version 4.0, 2011.

[13] NVIDIA Corporation, “NVIDIA’s Next

Generation CUDA Compute Architecture: Fermi,”

2009. Available at:

http://www.nvidia.com/content/PDF/fermi_white

_papers/NVIDIA_Fermi_Compute_Architecture_

Whitepaper.pdf.

[14] Y. Saad, “Iterative Methods for Sparse Linear

Systems,” 2nd Edition, SIAM, 2003.

[15] B. Schmidt, H. Aribowo, and H. Dang, “Iterative

sparse Matrix-Vector multiplication for integer

factorization on GPUs,” Proc. of the 17th Int.l

Conf. on Parallel processing - Volume Part II

(Euro-Par'11), Emmanuel Jeannot, Raymond

Namyst, and Jean Roman (Eds.) pp. 413-424,

2011.

[16] S. Thomas, “Preconditioned Conjugate Gradient

Methods for Semiconductor Device Simulation on

a CRAY C90 Vector Processor,” Proc. of the

Second International Conference on Vector and

Parallel Processing (VECPAR '96), José M. L. M.

Palma and Jack Dongarra (Eds.). Springer-Verlag,

London, UK, pp. 154-167, 1996.

[17] F. Vázquez, J.J. Fernández and E.M. Garzón, “A

new approach for sparse matrix vector product on

NVIDIA GPUs,” Concurrency and Computation

Practice and Experience, Vol. 23(2011) pp.

815–826. doi: 10.1002/cpe.1658v.

[18] F. Vázquez, E.M. Garzón, J.A. Martinez, and J.J.

Fernández, “Accelerating sparse matrix vector

product with GPUs,” Proc. of the 2009 Int’l Conf.

on Computational and Mathematical Methods in

Science and Engineering, CMMSE, vol. 2, pp.

1081-1092, 2009.

http://arxiv.org/abs/1112.5588
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

International Journal on Advanced Electrical and Computer Engineering (IJAECE)

__

ISSN(Online): 2349-9338, ISSN(Print): 2349-932X Volume -1, Issue -2, 2014

11

[19] V. Volkov, and J.W. Demmel, Benchmarking,

“GPUs to tune dense linear algebra,” Proc. of the

2008 ACM/IEEE Conf. on Supercomputing, IEEE

Press, USA, pp. 1-11, 2008.

[20] S. Williams, L. Olivier, R. Vuduc, J. Shalf, K.

Yelick, and J. Demmel, “Optimization of sparse

matrix-vector multiplication on emerging

multicore platforms,” Proc. of 2007 ACM/IEEE

Conference on Supercomputing, 2007.

[21] H. Wong, M. Papadopoulou, M.

Sadooghi-Alvandi and A. Moshovos,

“Demystifying GPU Microarchitecture through

Microbenchmarking,” IEEE Int’l Symp. On

Performance Analysis of Systems & Software, pp.

236-246, March 2010.

[22] P. Prata, G. Melfe, R. Pesqueira and J. Muranho,

“Impacto da Organização dos Dados em

Operações com Matrizes Esparsas na GPU,” in

Portuguese, INForum 2010- II Simpósio de

Informática, Luís S. Barbosa, Miguel P. Correia

(eds), pp. 255–266, , September 2010.



